HVLD модуль представляет собой простое устройство, для контроля напряжения питания микроконтроллера или внешнего напряжения (через делитель). Его задача при “выходе” напряжения за заданные пределы сформировать сообщение микроконтроллеру, что необходимо выполнить соответствующие действия. Часто этот модуль необходим, чтобы выполнить обработку аварийных ситуаций при пропадании напряжения питания.

В микроконтроллере PIC24FJ128GA204 есть возможность получения аналогового сигнала с внешнего делителя, но есть микроконтроллеры, в котором этот вход отсутствует, и возможен контроль только самого напряжения питания микроконтроллера. Внешний вход позволяет значительно расширить контроль напряжения питания, можно вывести контроль на входное напряжение до стабилизатора и на раннем этапе обнаружить понижение напряжения и раньше начать выполнять процедуру остановки системы.

Модуль имеет один регистр управления HLVDCON. Назначение бит следующее:

HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER
R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0
HLVDEN LSIDL
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0
VDIR BGVST IRVST HLVDL3 HLVDL2 HLVDL1 HLVDL0
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

bit 15 HLVDEN: бит включения питания модуля
1 = HLVD включен
0 = HLVD отключен

bit 14 Не реализовано: чтение дает ‘0’

bit 13 LIDL: бит работы модуля в режиме ожидания
1 = модуль отключен, когда устройство переходит в режим ожидания
0 = модуль продолжит работу в режиме ожидания

bit 12-8 Не реализовано: чтение дает ‘0’

bit 7 VDIR: Выбор направления изменения напряжения для формирования события
1 = Событие возникает, когда напряжение равно или превышает точку отключения (HLVDL <3: 0>)
0 = Событие возникает, когда напряжение равно или падает ниже точки отключения (HLVDL <3: 0>)

bit 6 BGVST: бит флага стабильности напряжения запрещенной зоны
1 = Указывает, что напряжение запрещенной зоны является стабильным
0 = Указывает, что напряжение запрещенной зоны является неустойчивым

bit 5 IRVST: бит флага стабильности внутренего источника опорного напряжения
1 = Внутреннее опорное напряжение является стабильным; логика High-Voltage Detect генерирует флаг прерывания на
заданный диапазон напряжения
0 = Внутреннее опорное напряжение неустойчиво; логика обнаружения высокого напряжения не приведет к прерыванию флаг в указанном диапазоне напряжений и прерывание HLVD не должно быть включено

bit 4 Не реализовано: чтение дает ‘0’

bit 3-0 HLVDL <3: 0>: бит ограничения обнаружения высокого / низкого напряжения
1111 = используется внешний аналоговый вход (вход поступает от выводов HLVDIN)
1110 = Точка отключения 1 (1)
1101 = точка отключения 2 (1)
*
*
*
1100 = точка срабатывания 3 (1)
0100 = Точка отключения 11 (1)
00xx = состояние не используется


HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS
Symbol Characteristic Min Typ Max Units
VHLVD HLVD Voltage on VDD
Transition
HLVDL<3:0> = 0100 3.45 3.59 3.74 V
HLVDL<3:0> = 0101 3.33 3.45 3.58 V
HLVDL<3:0> = 0110 3.0 3.125 3.25 V
HLVDL<3:0> = 0111 2.8 2.92 3.04 V
HLVDL<3:0> = 1000 2.7 2.81 2.93 V
HLVDL<3:0> = 1001 2.50 2.6 2.70 V
HLVDL<3:0> = 1010 2.40 2.52 2.64 V
HLVDL<3:0> = 1011 2.30 2.40 2.50 V
HLVDL<3:0> = 1100 2.20 2.29 2.39 V
HLVDL<3:0> = 1101 2.10 2.19 2.28 V
HLVDL<3:0> = 1110 2.00 2.08 2.17 V
VTHL HLVD Voltage on
HLVDIN Pin Transition
HLVDL<3:0> = 1111 1.2 V

Настройка модуля для работы с внешним напряжение, для контроля понижение ниже порога в MCC, выглядит таким образом:

Добавим модуль в ресурсы проекта

Выполним настройку:

Включим модуль (Enable HLVD), активируем прерывания от модуля, в последствии в прерывания включим процедуру, в которой будет необходимо выполнить требуемые операции при пропадании напряжения питания. Выберем внешний вход  HLVD для контроля напряжения.

Настроим логику работы прерывания (Voltage Change Direction) Выбор направления изменения напряжения для формирования события:
Exceeds Trip Point – Событие возникает, когда напряжение равно или превышает точку отключения.
Falls Below Trip Point  – Событие возникает, когда напряжение равно или падает ниже точки отключения.

Нас интересует вариант когда напряжение упадет ниже значения на входе 1,2 вольта (та как мы используем контроль по внешнему входу). Для контроля более высокого порога нам необходимо применить делитель на резисторах.

Например, нам надо контролировать порог 25 вольт. В качестве резистора “на землю” выберем 10 кОм, рассчитаем “верхний” резистор. Вспоминаем закон Ома.

На резисторе 10 кОм мы должны получить напряжение 1,2 вольта когда входное  25 вольт. Находим ток в цепи:

I= U/R = 1.2 V /10000 Ohm =  0.00012 A.

Падение напряжение на вернем резисторе:

Vv = Vin – 1.2 V = 25 – 1.2 = 23.8 V.

Зная ток в цепи и напряжение на резисторе найдем его сопротивление:

R = U/I = 23.8 V / 0.00012 A = 198333 Ohm.

Это приблизительно 200 kOhm.

Выполним обратный расчет, при напряжении 25 вольт на выходе делителя мы будем иметь 1.1904761904762 вольта. Но учитывая возможную погрешность на применяемом делителе, это все, вполне приемлемо.

Проверим настройку входа для HLVD модуля:

Выберем Pin Module

и проверим настройку входа

Запустим генерацию файлов в MCC

По окончанию генерации MCC предоставит нам несколько функций:

void HLVD_Initialize (void) –  инициализация и настройка модуля под наши параметры, это функция будут включена в процедуру запуска микроконтроллера. Это мы можем убедиться просмотрев функцию void SYSTEM_Initialize (void) в файле systems.c

bool HLVD_IsReferenceVoltageStable(void) – возвращает состояние стабильно или не стабильно опорное напряжение.

bool HLVD_IsBandGapVoltageStable(void) – возвращает состояние стабильно ли контролируемое напряжение.

void HLVD_Enable(void) – предоставляет возможность пользователю включать модуль в процессе работы программы.

void HLVD_Disable(void) – отключать модуль.

void HLVD_TripPointSetup(HLVD_TRIP_DIRECTION direction, HLVD_TRIP_POINTS trip_points) – изменять настройки контроля напряжения.

и сама функция выполнения прерывания от события:

В нее надо встроить нашу функцию, которая будет обязана выполнить наши задания, если напряжение питания становиться ниже нормы.

 



Это может быть интересно


  • Униполярный шаговый двигатель – часть 2Униполярный шаговый двигатель – часть 2
    В этой части только итог и версия 2.0 универсальной, которая позволяет управлять шаговым двигателем во всех трех режимах и 3.0 специальной библиотеки только для одного полушагового режима. В этих библиотеках …
  • Одноканальный емкостной сенсор – AT42QT1012Одноканальный емкостной сенсор – AT42QT1012
    Описание сенсора  Незаконченный проект, так-как сенсор не оправдал своего назначения, не рекомендую, просто выброшенные деньги. Особенности. • Количество сенсоров – один, режим переключения ( touch-on/touch-off ), а также программируемая автоматическая задержка выключения …
  • Регулятор влажности ch-3800Регулятор влажности ch-3800
      И еще один проект на плате ch-c3xxx –  универсальный регулятор влажности ch-3800. Регулятор позволяет работать как в режиме индикатора влажности, так и в режиме регулятора. Рабочий диапазон измеряемой относительной …
  • Проект с использованием MCC часть 12-2Проект с использованием MCC часть 12-2
    Настало время для изучения шины I2C. Изучать будем на примере работы с индикатором RET012864E. Что изменили со старой схемы: В прошлой теме я затупил и не добавил подтягивающие резисторы которые необходимы …
  • Простой сенсорный регулятор светаПростой сенсорный регулятор света
    Простой сенсорный регулятор. Проект – 2007 года. Регулятор выполнена на микроконтроллере PIC12F683 и имеет минимальное количество элементов. Выполняет стандартные функции, включение выключение света, изменение яркости, запоминание последнего установленного уровня и быстрое …
  • APA102 – светодиоды со встроенным драйвером и SPI интерфейсомAPA102 – светодиоды со встроенным драйвером и SPI интерфейсом
    APA102 В 2014 году фирма Shenzhen Led Color Optoelectronic Co., Ltd http://www.szledcolor.com/ начала производство светодиодов на драйвере APA102. Это серия так называемых светодиодов со встроенным драйвером. Основной особенностью этих светодиодов, что …
  • Altium Designer – создание рисунков на печатной платеAltium Designer – создание рисунков на печатной плате
      Для создание рисунков на печатной платы в Altium Designer можно использовать возможность использовать в Altium Designer сторонних скриптов. Мне возможность эта очень понравилась и я решил её расшарить для электронщиков. …
  • Простой цифровой милливольтметр постоянного токаПростой цифровой милливольтметр постоянного тока
    Простой цифровой вольтметр постоянного тока. Три диапазона измерений с автоматическим переключением 1 – 0,001 – 0,999 V, 2 – 0,01-9,99 V, 3 – 0,1-99,9. Четыре управляемых выхода с возможностью задания функции контроля и времени реакции на …
  • PIC32MZ – прерывания (заметки)PIC32MZ – прерывания (заметки)
    Виды формирования запоминая контекста при входе в прерывания. Компилятор представляет три варианта AUTO – когда запоминания места возврата из подпрограммы возложено на программу, т.е все создается программно. Этот метод является …
  • WiFi ESP8266 ESP-202 (ESP-12F)WiFi ESP8266 ESP-202 (ESP-12F)
    Первое знакомство, сначала надо его купить… http://voron.ua/catalog/024404 Схема для подключения и тестирования По схеме ставим две кнопки, сброс и кнопку BT2, для перевода в режим обновления прошивки. Если надо сделать аппаратный сброс …



Tagged with →  
Share →
Translate »

Copyright © Catcatcat 2013-2018. Все права защищены.
Копирование разрешается только с указанием активной ссылки на правообладателя.

e-mail: catcatcat.electronics@gmail.com