HVLD модуль представляет собой простое устройство, для контроля напряжения питания микроконтроллера или внешнего напряжения (через делитель). Его задача при “выходе” напряжения за заданные пределы сформировать сообщение микроконтроллеру, что необходимо выполнить соответствующие действия. Часто этот модуль необходим, чтобы выполнить обработку аварийных ситуаций при пропадании напряжения питания.

В микроконтроллере PIC24FJ128GA204 есть возможность получения аналогового сигнала с внешнего делителя, но есть микроконтроллеры, в котором этот вход отсутствует, и возможен контроль только самого напряжения питания микроконтроллера. Внешний вход позволяет значительно расширить контроль напряжения питания, можно вывести контроль на входное напряжение до стабилизатора и на раннем этапе обнаружить понижение напряжения и раньше начать выполнять процедуру остановки системы.

Модуль имеет один регистр управления HLVDCON. Назначение бит следующее:

HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER
R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0
HLVDEN LSIDL
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0
VDIR BGVST IRVST HLVDL3 HLVDL2 HLVDL1 HLVDL0
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

bit 15 HLVDEN: бит включения питания модуля
1 = HLVD включен
0 = HLVD отключен

bit 14 Не реализовано: чтение дает ‘0’

bit 13 LIDL: бит работы модуля в режиме ожидания
1 = модуль отключен, когда устройство переходит в режим ожидания
0 = модуль продолжит работу в режиме ожидания

bit 12-8 Не реализовано: чтение дает ‘0’

bit 7 VDIR: Выбор направления изменения напряжения для формирования события
1 = Событие возникает, когда напряжение равно или превышает точку отключения (HLVDL <3: 0>)
0 = Событие возникает, когда напряжение равно или падает ниже точки отключения (HLVDL <3: 0>)

bit 6 BGVST: бит флага стабильности напряжения запрещенной зоны
1 = Указывает, что напряжение запрещенной зоны является стабильным
0 = Указывает, что напряжение запрещенной зоны является неустойчивым

bit 5 IRVST: бит флага стабильности внутренего источника опорного напряжения
1 = Внутреннее опорное напряжение является стабильным; логика High-Voltage Detect генерирует флаг прерывания на
заданный диапазон напряжения
0 = Внутреннее опорное напряжение неустойчиво; логика обнаружения высокого напряжения не приведет к прерыванию флаг в указанном диапазоне напряжений и прерывание HLVD не должно быть включено

bit 4 Не реализовано: чтение дает ‘0’

bit 3-0 HLVDL <3: 0>: бит ограничения обнаружения высокого / низкого напряжения
1111 = используется внешний аналоговый вход (вход поступает от выводов HLVDIN)
1110 = Точка отключения 1 (1)
1101 = точка отключения 2 (1)
*
*
*
1100 = точка срабатывания 3 (1)
0100 = Точка отключения 11 (1)
00xx = состояние не используется


HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS
Symbol Characteristic Min Typ Max Units
VHLVD HLVD Voltage on VDD
Transition
HLVDL<3:0> = 0100 3.45 3.59 3.74 V
HLVDL<3:0> = 0101 3.33 3.45 3.58 V
HLVDL<3:0> = 0110 3.0 3.125 3.25 V
HLVDL<3:0> = 0111 2.8 2.92 3.04 V
HLVDL<3:0> = 1000 2.7 2.81 2.93 V
HLVDL<3:0> = 1001 2.50 2.6 2.70 V
HLVDL<3:0> = 1010 2.40 2.52 2.64 V
HLVDL<3:0> = 1011 2.30 2.40 2.50 V
HLVDL<3:0> = 1100 2.20 2.29 2.39 V
HLVDL<3:0> = 1101 2.10 2.19 2.28 V
HLVDL<3:0> = 1110 2.00 2.08 2.17 V
VTHL HLVD Voltage on
HLVDIN Pin Transition
HLVDL<3:0> = 1111 1.2 V

Настройка модуля для работы с внешним напряжение, для контроля понижение ниже порога в MCC, выглядит таким образом:

Добавим модуль в ресурсы проекта

Выполним настройку:

Включим модуль (Enable HLVD), активируем прерывания от модуля, в последствии в прерывания включим процедуру, в которой будет необходимо выполнить требуемые операции при пропадании напряжения питания. Выберем внешний вход  HLVD для контроля напряжения.

Настроим логику работы прерывания (Voltage Change Direction) Выбор направления изменения напряжения для формирования события:
Exceeds Trip Point – Событие возникает, когда напряжение равно или превышает точку отключения.
Falls Below Trip Point  – Событие возникает, когда напряжение равно или падает ниже точки отключения.

Нас интересует вариант когда напряжение упадет ниже значения на входе 1,2 вольта (та как мы используем контроль по внешнему входу). Для контроля более высокого порога нам необходимо применить делитель на резисторах.

Например, нам надо контролировать порог 25 вольт. В качестве резистора “на землю” выберем 10 кОм, рассчитаем “верхний” резистор. Вспоминаем закон Ома.

На резисторе 10 кОм мы должны получить напряжение 1,2 вольта когда входное  25 вольт. Находим ток в цепи:

I= U/R = 1.2 V /10000 Ohm =  0.00012 A.

Падение напряжение на вернем резисторе:

Vv = Vin – 1.2 V = 25 – 1.2 = 23.8 V.

Зная ток в цепи и напряжение на резисторе найдем его сопротивление:

R = U/I = 23.8 V / 0.00012 A = 198333 Ohm.

Это приблизительно 200 kOhm.

Выполним обратный расчет, при напряжении 25 вольт на выходе делителя мы будем иметь 1.1904761904762 вольта. Но учитывая возможную погрешность на применяемом делителе, это все, вполне приемлемо.

Проверим настройку входа для HLVD модуля:

Выберем Pin Module

и проверим настройку входа

Запустим генерацию файлов в MCC

По окончанию генерации MCC предоставит нам несколько функций:

void HLVD_Initialize (void) –  инициализация и настройка модуля под наши параметры, это функция будут включена в процедуру запуска микроконтроллера. Это мы можем убедиться просмотрев функцию void SYSTEM_Initialize (void) в файле systems.c

bool HLVD_IsReferenceVoltageStable(void) – возвращает состояние стабильно или не стабильно опорное напряжение.

bool HLVD_IsBandGapVoltageStable(void) – возвращает состояние стабильно ли контролируемое напряжение.

void HLVD_Enable(void) – предоставляет возможность пользователю включать модуль в процессе работы программы.

void HLVD_Disable(void) – отключать модуль.

void HLVD_TripPointSetup(HLVD_TRIP_DIRECTION direction, HLVD_TRIP_POINTS trip_points) – изменять настройки контроля напряжения.

и сама функция выполнения прерывания от события:

В нее надо встроить нашу функцию, которая будет обязана выполнить наши задания, если напряжение питания становиться ниже нормы.

 



Это может быть интересно


  • Одноканальный емкостной сенсор – AT42QT1012Одноканальный емкостной сенсор – AT42QT1012
    Описание сенсора  Незаконченный проект, так-как сенсор не оправдал своего назначения, не рекомендую, просто выброшенные деньги. Особенности. • Количество сенсоров – один, режим переключения ( touch-on/touch-off ), а также программируемая автоматическая задержка выключения …
  • Акриловый корпус для платы ch-4000Акриловый корпус для платы ch-4000
    Плата ch-4000 подходит для монтажа в корпуса на дин рейку, но для домашней автоматики необходимо что-то другое, поэтому был разработан корпус из акрила который позволит создавать настольные и настенные устройства. Корпус состоит из …
  • Проект с использованием MCC часть 16Проект с использованием MCC часть 16
    Продолжим изучение EUSART. На этом этапе отработает передачи данных с ПК и получения эха. Для этого в основной цикл программы добавим код

    [crayon-5d07e022c2b01492431981/]

    Суть его проста постоянно в главном цикле …

  • Проект с использованием MCC часть 04Проект с использованием MCC часть 04
    Теперь простого горения светиков нам не достаточно, заставим их мигать. Для начала используем первобытно простой способ, но достаточно простой. Используем функции delay, напрягаться откуда они берутся не будем, самое главное , …
  • Проект с использованием MCC часть 11Проект с использованием MCC часть 11
    Можно несколько облагородить программу вынести наши процедуры обработки нажатия кнопок в отдельные функции. Но вы должны понимать, что это хоть и не значительно, но будет тормозить общую скорость работы проекта, …
  • AD9833 – Programmable Waveform Generator – part twoAD9833 – Programmable Waveform Generator – part two
    Прошло время и появилась тема, что-бы закончить проект AD9833 – Programmable Waveform Generator. Приехали печатные платы. В этот раз я печатные платы заказывал в https://jlcpcb.com/ делал это в первый раз …
  • УКВ – радиоприем, часть 2УКВ – радиоприем, часть 2
    Пришло свободное время решил вторую часть проекта реализовать (правда есть мысль и третью с использование цветного OLED и функцией ch-светомузыки, но это только задумка… Для понимания функций интегрального приемника RDA5807FP читайте …
  • MPLAB® Code ConfiguratorMPLAB® Code Configurator
    MPLAB ® Code конфигуратор (MCC) является свободно распространяемым плагином, это графическая среда программирования, которая генерирует бесшовный, легкий для понимания кода на Cи, чтобы вставить его в свой проект. Метки:MPLAB® Code …
  • Стробоскоп для автомобиляСтробоскоп для автомобиля
    Одним из популярных решений светового тюнинга автомобиля, мотоцикла или скутера стал эффект –  “полицейский стробоскоп“. На база платы ch-c0050 реализовано несколько проектов. В этой статье приводятся две версии программы. Рекомендации …
  • Бегущие огни на WS2812BБегущие огни на WS2812B
    В настоящее время большой популярностью стали пользоваться светодиоды со встроенным драйвером WS2812B. Текущий проект предназначен показать возможность использования и управления этими светодиодами. Это и проект и исследование по работе с …



 

Tagged with →  
Share →
Translate »

Copyright © Catcatcat electronics 2013-2019. Все права защищены.
Копирование разрешается только с указанием активной ссылки на правообладателя.

e-mail: catcatcat.electronics@gmail.com