Измерение частоты

Visits: 1373


Измерение частоты классически можно выполнить двумя способами.

Способ первый.

Необходимо за фиксированный промежуток времени подсчитать количество периодов измеряемой частоты. После этого необходимо количество импульсов разделить на время измерения. Точность измерения зависит от длительности измеряемого промежутка времени. Чем длиннее промежуток, тем точнее можно выполнить изменения.

 PIC24-08-01

 Второй способ.

Это измерять длительность одного периода и вычислитель частоту. Точность измерения зависит от частоты тактовых импульсов, чем выше и стабильней частота тактовых импульсов тем выше разрешение и точнее измерения.

 PIC24-08-02

К каждом методе есть свои плюсы и свои минусы. Если необходимо высокая точно в первом это длительность измерения, если надо быстро измерять, то необходимо высокая тактовая частота.

Для измерения частоты (в нашем варианте частоты электросети), модифицируем нашу схему следующим образом.

 PIC24-08-04

Все эти измерения можно выполнить при помощи встроенного таймера. Так-как у нас таймер 1 и 2 занят формированием временных интервалом. Поэтому  будем для измерения частоты использовать сборку на таймерах TMR4 и TMR5. Для входа сигнала будем использовать Т4СК.

PIC24-08-03

Так как периферийные модули по умолчанию “никуда не подключен”, то первым делом необходимо настроить регистры конфигурации выбора периферийного модуля. Нам надо определиться к какой ножке микроконтроллера мы подключим его вход. У нас свободна 14 нога. Это функция RP5. Для подключения входа T4CK к ноге 14 на необходимо в регистра настройки входа RPINR4 загрузить значение 5.

Для настройки входа таймера обратимся к регистрам управления входами периферийных устройств.

Название входа Имя периферийного модуля Регистр Биты конфигурации
External Interrupt 1 INT1 RPINR0 INTR1<4:0>
External Interrupt 2 INT2 RPINR1 INTR2R<4:0>
Timer2 External Clock T2CK RPINR3 T2CKR<4:0>
Timer3 External Clock T3CK RPINR3 T3CKR<4:0>
Timer4 External Clock T4CK RPINR4 T4CKR<4:0>
Timer5 External Clock T5CK RPINR4 T5CKR<4:0>
Input Capture 1 IC1 RPINR7 IC1R<4:0>
Input Capture 2 IC2 RPINR7 IC2R<4:0>
Input Capture 3 IC3 RPINR8 IC3R<4:0>
Input Capture 4 IC4 RPINR8 IC4R<4:0>
Input Capture 5 IC5 RPINR9 IC5R<4:0>
Output Compare Fault A OCFA RPINR11 OCFAR<4:0>
Output Compare Fault B OCFB RPINR11 OCFBR<4:0>
UART1 Receive U1RX RPINR18 U1RXR<4:0>
UART1 Clear To Send U1CTS RPINR18 U1CTSR<4:0>
UART2 Receive U2RX RPINR19 U2RXR<4:0>
UART2 Clear To Send U2CTS RPINR19 U2CTSR<4:0>
SPI1 Data Input SDI1 RPINR20 SDI1R<4:0>
SPI1 Clock Input SCK1IN RPINR20 SCK1R<4:0>
SPI1 Slave Select Input SS1IN RPINR21 SS1R<4:0>
SPI2 Data Input SDI2 RPINR22 SDI2R<4:0>
SPI2 Clock Input SCK2IN RPINR22 SCK2R<4:0>
SPI2 Slave Select Input SS2IN RPINR23 SS2R<4:0>

Функции ввода

Функция Номер ножки Код для записи в регистр
RP0 4 0
RP1 5 1
RP2 6 2
RP3 7 3
RP4 11 4
RP5 14 5
RP6 15 6
RP7 16 7
RP8 17 8
RP9 18 9
RP10 21 10
RP11 22 11
RP12 23 12
RP13 24 13
RP14 25 14
RP15 26 15

Настройка входа таймера:

        RPINR4bits.T4CKR=5;  // настройка входа таймера 4 на вывод 14 микроконтроллера (RP5)
	TRISB = 0b0000000000100000;	// разряды порта B на выход, кроме RB5

Конфигурирование таймеров: (будем настраивать для 32 битного режима):

Чтобы настроить Timer2/3 или Timer4/5 для 32-разрядной работы необходимо:
1. Установить T32 бит (T2CON <3> или T4CON <3> = 1).
2. Настроить предделителя для Timer2 или Timer4 битами TCKPS1: TCKPS0.
3. Настроить вход для тактовых импульсов и режимов работы с помощью TCS и TGATE бит. Если TCS установлен для внешней синхронизации, RPINRx (TxCK) должны быть настроены на доступные RPn вход.
4. Настроить период работы таймера загрузив регистр PR. PR3 (или PR5) будет содержат старшее слово, в то время как PR2 (или PR4) содержать младшие слово.
5. Если требуется прерывания, установить биты в регистрах T3IE или T5IE; использовать приоритет бит, T3IP2: T3IP0 или T5IP2: T5IP0, чтобы установить прерывание приоритет. Обратите внимание, что в то время как Timer2 или Timer4 управления таймера, прерывания появляется как Timer3 или Timer5 прерывания.
6. Установить TON бит (= 1). 

//---------------------------------------------------------------------------
// настройка тамера TMR4
	T4CON=0b1010000000001010;
//		|||||||||||||||+-- неиспользуемый
//		||||||||||||||+--- TCS: 1 - внешний источник
//		|||||||||||||+---- неиспользуемый
//		||||||||||||+----- T32: 0- 32 битный режим
//		||||||||||++------ TCKPS1:TCKPS0: пределитель 00-1:1
//		|||||||||+-------- TGATE: - отключен
//		|||++++++--------- неиспользуемые
//		||+--------------- TSIDL: 1- врежиме Idle отключен
//		|+---------------- неиспользуемый
//		+----------------- TON: 1 - таймер включен
	PR2=0xFFFF;	// период счета
//---------------------------------------------------------------------------

 Для работы нашей схемы нам необходимо на 14 ножку контроллера подключить подтягивающий резистор. За активацию подтягивающих резисторов отвечают регистры CNPU1 и CNPU2. Для нашего контроллера соответствие с выводами контроллера следующее:

Регистр Управляющий бит Вывод контроллера
CNPU1 CN0PUE 12
CNPU1 CN1PUE 11
CNPU1 CN2PUE 2
CNPU1 CN2PUE 3
CNPU1 CN3PUE 4
CNPU1 CN4PUE 5
CNPU1 CN5PUE 6
CNPU1 CN6PUE 7
CNPU1 CN7PUE
CNPU1 CN8PUE
CNPU1 CN9PUE
CNPU1 CN10PUE
CNPU1 CN11PUE 26
CNPU1 CN12PUE 25
CNPU1 CN13PUE 24
CNPU1 CN14PUE 23
CNPU1 CN15PUE 22
CNPU2 CN16PUE 21
CNPU2 CN17PUE
CNPU2 CN18PUE
CNPU2 CN19PUE
CNPU2 CN20PUE
CNPU2 CN21PUE 18
CNPU2 CN22PUE 17
CNPU2 CN23PUE 16
CNPU2 CN24PUE 15
CNPU2 CN25PUE
CNPU2 CN26PUE
CNPU2 CN27PUE 14
CNPU2 CN28PUE
CNPU2 CN29PUE 10
CNPU2 CN30PUE 9

Для подключение подтягивающего резистора к ножке 14 , необходимо выполнить команду

        CNPU2bits.CN27PUE=1;    // подключить к 14 ножке подтягивающий резистор

 Так как в нашем примере, мы используем внутренний тактовый генератор, то измерения соответственно будет менее точные если бы мы использовали кварцевую стабилизацию частоты. Для корректировки длительности, будем использовать регистр PR1.

Для измерения частоты, добавить в цикл прерывания от таймера Т1 две команды:

        // измерение частоты
        chastota=TMR4;
        TMR4=0;

 т.е. таймер Т1 формирует заданный нами интервал времени, по прерыванию таймера , мы считываемым значение таймера Т4, а затем обнуляем его.

Для индикации в главном цикле программы добавим

        curcorG_LCD (30,0);
        bin_dec(chastota ,0,0,0);
        Stringp_LCD (" герц",0,1,1);

 теперь внизу дисплея мы увидим измеряемую частоту в герцах. Если период измерения 1 секунда, то измерять будем с точностью до 1 Герца, для увеличение точности до 0,1 Герца или 0,01 герца, нам надо соответственно увеличить время измерения.

 Фото для первого варианта, когда период измерения равен 1 секунде.

 PIC24-08-05

 Но для контроля качества частоты в сети нам необходимо более высокая точность, поэтому увеличим период измерения до 10 секунд. Для это нам необходимо добавить делитель, программный, чтобы увеличить время измерения до 10 секунд.

        // измерение частоты
        if(++chetgerc>9)
        {
            chetgerc=0;
            chastota=TMR4;
            TMR4=0;
        }

а для красоты, индикации десятых долей, включит индикацию запятой перед младшим разрядом.

        curcorG_LCD (30,0);
        bin_dec(chastota ,1,0,0);
        Stringp_LCD (" герц",0,1,1);

 pic24-08-0610 секунд на измерение это уже много. А если необходимо измерять частоту с точностью до 0,01 Герца, так это надо ждать 100 СЕКУНД!!!, а эффект усреднения который может за это время внести свои погрешности. Вообще сделаем вывод, для оперативного контроля частоты электросети такой метод не эффективен. Хотя при написании этого урока, наблюдая за частотой сети, она колебалась от 50,04 – 50,31 Герца (в режиме измерения 100 секунд). 

Испробуем второй метод измерения длительности периода (или импульса). Благо, что сам модуль микроконтроллера позволяет это делать.

 

продолжение следует…


Это может быть интересно


  • PIC18F25K42 – v. A001 – выявленные баги.PIC18F25K42 – v. A001 – выявленные баги.
    Visits: 578 Модуль I2C Не работает при использовании в стандартной конфигурации MCC. Требует особой нестандартной конфигурации и управления для нормальной работы. Обойти Обход проблемы возможен библиотека см статью. Модуль ADC2 На …
  • MPLAB® Harmony – или как это просто! Часть 1.MPLAB® Harmony – или как это просто! Часть 1.
    Visits: 3530 Часть первая – Установка Гармонии. Музыкальная тема к статье, слушаем: В начале запуска нового проекта и выбора микроконтроллера стоит задача правильно его сконфигурировать, прежде чем перейти к реализации …
  • Униполярный шаговый двигательУниполярный шаговый двигатель
    Visits: 2125     В приводах различных устройств часто применяются шаговые двигатели, Шаговый двигатели различают двух типов униполярные – когда обмотки коммутируются током текущим только в одну сторону, например при …
  • WiFi ESP8266 – AT команды связанные с функцией TCP/IP (v.1.6.1)WiFi ESP8266 – AT команды связанные с функцией TCP/IP (v.1.6.1)
    Visits: 4989 AT команды связанные с функцией TCP/IP В этом разделе описаны команды которые позволяют устанавливать соединения между серверами и клиентами в сети. Приведено описание команд и примеры их выполнения. …
  • Ссылки на интересные источникиСсылки на интересные источники
    Visits: 804 Сбор 3D моделей от André L’Hérault конденсаторы, резисторы, индуктивности dropbox IPC-SM-782 Surface Mount Design and Land Pattern Standard Видео уроки по Altium designer Alexey Sabunin https://www.youtube.com/channel/UCG7N5CqXpyK8nQjr1EmMgng Сергей Булавинов https://www.youtube.com/channel/UCISAMXRnN_Qw9UTjUwZI1Jw Robert Feranec https://www.youtube.com/user/matarofe …
  • Проблемы классической светомузыкиПроблемы классической светомузыки
    Visits: 2018 Светомузыка – что это такое? Определение: Светомузыка  (жаргонное: цветомузыка)  — вид искусства, основанный на способности человека ассоциировать звуковые ощущения со световыми восприятиями. Такое явление в неврологии получило название …
  • Счетчики посетителейСчетчики посетителей
    Visits: 1251 Вас сосчитали!? или счетчики посетителей.   Для чего нужны счетчики посетителей? Какие они бывают? ТОРГОВЛЯ. Подсчитайте, сколько ваш магазин посещает человек за день. Кок много человек приходит утром, какое …
  • Проект с использованием MCC часть 05Проект с использованием MCC часть 05
    Visits: 1830 Эту часть назовем так как избавься от delay, там где а это реально не надо. Для это нам потребуется научиться использовать прерывания и работать с таймерами. Что такое …
  • NeoPixel LED and PIC24NeoPixel LED and PIC24
    Visits: 593 Популярность однопроводной шины для управления светодиода типа WS2812 не ослабевает, а новые типы светодиодов в корпусах 3,5*3,5мм, 2,0*2,0мм становяться все больше привлекательными. Построение дисплеев для анимации требуют все …
  • Часы + Календарь + Термометр + …Часы + Календарь + Термометр + …
    Visits: 2664 Часы + Календарь + Термометр + Индикатор влажности + Секундомер + Дистанционное управление на ИК лучах (пульты на RC-5 протоколе) + Автоматическая регулировка яркости + Возможность вывода данных через USB, …


10-бит, высокоскоростной, аналого-цифровой преобразователь, часть 2

Visits: 2452


Измерение переменного напряжения, вычисление TrueRMS.

Этот урок обучения работе с АЦП будет предназначен для измерения параметров переменного тока, это актуально к нашим электросетям, где качество поставляемой электроэнергии является проблемой. За основу вычисления величины переменного напряжения возьмем информацию на сайте http://www.easycalculation.comTrueRMS переменного тока, это количество передаваемой энергии которое в идеале соответствует такой же величине постоянного тока.

В нашей электросети сети стандарт 230 вольт, это в идеале 0,707 от амплитудного значения переменного тока в сети, т.е. если максимальное значение амплитуды умножить на 0,707, то мы получим наши 230 вольт. По такому принципу работают большинство вольтметров. В последнее время огибающая кривой не соответствует идеалу синусоиды, а по этому и количество передаваемой энергии далека от идеала. Наша задача определить реальное количество энергии передаваемое в нашей электросети с учетом всех (возможно измеренных) искажений.

pic24-15-600x240
 

Для измерения переменного напряжения, на нашу макетную плату необходимо добавить несколько компонентов. Для измерения необходимо будет применить трансформатор, для гальванической развязки.

Схема.

pic24-08-071

Для вычисление истинного напряжения TrueRMS необходимо выполнить сканирования одного периода напряжения сети. Т.е. необходимо произвести n- количество измерений. В идеале чем чаще мы сделаем выборки тем точнее будет расчет реального напряжения.

pic24-16-600x256

Для измерения истинного напряжения в сети нам необходимо произвести выборку одного периода, или провести выборку на протяжении длительности более одного периода, но я думаю, что точнее будет когда мы будем для измерения выбирать один период.

Для измерения нам скорости от RC генератора АЦП будет недостаточно, поэтому Первое, что сделаем переключимся на системный генератор. Нам необходимо будет определиться какое количество измерений нам необходимо сделать за один период. Первое – необходимо организовать формирования массива данных которые потом понадобятся для вычисления.

Необходимо определить, скорость преобразования. Скорость преобразования зависит от тактовой частоты. В нашем проекте тактовая 32 мГц. Это длительность 31,25 ns.   Для преобразователя необходимо 12 TAD для конвертирования 10 данных. Длительность вычисляется по формуле TAD = TCY • (ADCS<7:0>+1). Где TCY = 2 * Tosc для нашего микроконтроллера. Tosc=32 мГц.

Для буфера измерений отведем буфер 125 измерений. Для тактовой частоты 32 мГц и измеряемой 50 Гц нам необходимо установить для битов  ADCS7:ADCS0: – 63, длительность выборки SAMC4:SAMC0: 28.

Для вычислений можно использовать файл ME (подготавливается).

// настройка АЦП
        TRISA = 0b0000000000000001; // AN0 вход
	AD1PCFG=0b1111111111111110; // настроить AN0 на вход
	AD1CHS = 0x0000;            // AN0 подключить к CH0
        AD1CSSL = 0;
        AD1CON3 = 0b0001110000111111;
//                  ||||||||++++++++-- ADCS7:ADCS0: 63 задание длительности TAD
//                  |||+++++---------- SAMC4:SAMC0: 28 TAD время выборки
//                  |++--------------- не используется
//                  +----------------- 0-системный генартор
        AD1CON2 = 0b0000000000011110;
//                  |||||||||||||||+-- ALTS:всегда использует MUX A входа
//                  ||||||||||||||+--- BUFM: два буфера по 8 регистров
//                  ||||||||||++++---- SMPI3:SMPI0: прерывание от каждого 8 измерения
//                  |||||||||+-------- не используется
//                  ||||||||+--------- BUFS: бит состояния
//                  ||||||++---------- не используется
//                  |||||+------------ CSCNA: сканирование входов выключено
//                  |||++------------- не используется
//                  +++--------------- VCFG2:VCFG0: опорное AVdd и AVss
        AD1CON1 = 0b1000000111100000;
//                  |||||||||||||||+-- DONE:
//                  ||||||||||||||+--- SAMP
//                  |||||||||||||+---- ASAM
//                  |||||||||||++----- не используется
//                  ||||||||+++------- SSRC2:SSRC0: от внутреннего тактового RC генератора запуск
//                  ||||||++---------- FORM1:FORM0: Целое (0000 00dd dddd dddd)
//                  |||+++------------ не используется
//                  ||+--------------- ADSIDL:Продолжить работу модуля в режиме ожидания
//                  |+---------------- не используется
//                  +----------------- ADON:1 - АЦП - включен

В функции прерывания от АЦП выполним процедуру считывания регистров буфера АЦП и загрузки в буфер данных 

void __attribute__ ((__interrupt__, __auto_psv__)) _ADC1Interrupt(void)
{
    IFS0bits.AD1IF = 0;// сбросить бит прерывания
    if(_BUFS)// определяем в какую часть буфера в настоящий момент пишит АЦП
// 0- запись идет в группу ADC1BUF0 до ADC1BUF7
// 1- запись идет в группу ADC1BUF8 до ADC1BUFF
    {
        ADC16Ptr = &ADC1BUF0; 		// будем читать данные из ADC1BUF0 до ADC1BUF7
    }
    else
    {
        ADC16Ptr = &ADC1BUF8; 		// будем читать данные из ADC1BUF8 до ADC1BUFF
    }
    for (countZag = 0; countZag < 8; countZag++)
    {
        if(++countec>=125)
        {
            countec=0;
            Bit.ZAG=1;
        }
        ADC1izm[countec] = *ADC16Ptr++; // загрузка из буфера
    }
}

Проект вычисляет TrueRMS переменного тока, запоминает минимальное и максимальное напряжение за все время работы, выводит на индикатор амплитудное значение.

Сам механизм вычисления:

        ADCValue=0;
// возведение в квадрад
        for (count = 0; count < 125; count++)
        ADC1obra[count]=ADC1obra[count]*ADC1obra[count];              // загрузка из буфера
// нахождение сyммы
        for (count = 0; count < 125; count++)
        ADCValue+=ADC1obra[count];
// вычисление среднего
        ADCValue=ADCValue/125;
// извлечение корня
        ADCValue=sqrt(ADCValue);

 


Фото проекта.

На дисплей выводиться информация по минимаксам (минимальное и максимальное значение напряжения зафиксированное за время работы, а также максимальное амплитудное. Посредине внизу напряжение в сети измеренное методом TrueRMS.

pic24-08-06


Проект, среда разработки MPLAB® X v1.70, компилятор С MPLAB XC16 v1.11.

Значок

10-бит, высокоскоростной, аналого-цифровой преобразователь, часть 1 72.81 KB 1108 downloads

10-бит, высокоскоростной, аналого-цифровой преобразователь. Проект,...
Значок

10-бит, высокоскоростной, аналого-цифровой преобразователь, часть 2 99.45 KB 884 downloads

10-бит, высокоскоростной, аналого-цифровой преобразователь,...

10-бит, высокоскоростной, аналого-цифровой преобразователь, часть 1

Visits: 1474


Измерение постоянного напряжения.

Ну и  как можно обойти АЦП, тем более что он позволяет сканировать со скоростью до 500 тысяч преобразование в секунду (500 ksps).

Структурная схема

pic24-13-600x600

И так мысли в слух:

В PIC24 серии АЦП более продвинутый, более гибкая схема управления, выборки и конвертирования и получения результата. принцип работы прост усилитель (S/H) выборки/хранения может через коммутаторы подключаться к контактам контроллера настроенным как аналоговые входы. Через эти контакты он получает входное напряжения которое он запоминает для последующей оцифровки в АЦП. Управление выборкой сигнала может быть управляться как вручную, так и автоматически. Существует минимальное время выборки для того, чтобы усилитель выборки/хранения дал желаемую точность преобразования, т.е. чтобы измерительная емкость смогла полностью зарядиться от входного сигнала. Далее включается в работу АЦП и запускается цикл преобразования – это время, необходимое для преобразования напряжения формируемое усилителем выборки/хранения на его входе. Весь процесс может обеспечивается триггером управления работой АЦП, он автоматически заканчивает время выборки и начинает аналогоцифровое преобразование. Управлявшие сигналы для триггера могут быть взяты из различных аппаратных средств контроллера, или он может управляться вручную из программного обеспечения. Для АЦП требуется один такт (TAD), для преобразования каждого бита результата и плюс два дополнительных такта, или в общей сложности 12 TAD циклов для 10-разрядного преобразования. Когда время преобразования будет завершено, результат загружается в один из 16 буферов АЦП.  АЦП может формировать прерывания для программного обеспечения. Сумма времени выборки и АЦП преобразования, дает общее время преобразования.
Один из режимов преобразования – есть режим непрерывного преобразования, когда триггер автоматического преобразования, использует счетчик и генератор АЦП для формирование времени между преобразованиями. Режим Auto-Sample и триггер автоматического преобразования могут быть использованы совместно, чтобы обеспечить циклическое преобразование без вмешательства программы.

 АЦП в общей сложности использует 22 регистра.

Регистры управления
Модуль имеет шесть регистров управления и состояния:
• AD1CON1:  – регистра управления 1
• AD1CON2:  – регистра управления 2
• AD1CON3:  – регистра управления 3
• AD1CHS:     – выбор входного канала
• AD1PCFG:  – конфигурация порта
• AD1CSSL:  – регистра выбора входов измерения для режима последовательного сканирования.
AD1CON1, AD1CON2 и AD1CON3 регистры контролировать общую работу модуля АЦП. Это подразумевает подключение модуля,
Настройка времени преобразования и источники опорного напряжения, выбрав отбора проб и Преобразование триггеров и ручного управления образца / преобразование последовательности.
AD1CHS регистр (регистр 17-4) выбирает входных каналов для подключения к S/H усилитель. Она также позволяет выбор входных мультиплексоров и выбор источника опорного напряжения для дифференциального режима работы.
AD1PCFG регистр (регистр 17-5) настраивает порты ввода / вывода аналоговых входов или цифровых входов / выходов.
AD1CSSL регистр (регистр 17-6) выбирает каналы должны быть включены для последовательного сканирования.

АЦП Буферы результата измерений.

Модуль включает в себя 16-регистров данных, в зависимости от режима работы АЦП может вести автоматическую запись в эти регистры. Для большей гибкости, если скорости работы процессора недостаточно, чтобы считать все 16 регистров, за время одного конвертирования, можно включить режим, года запись ведется в восемь младших , а процессор, в это время, может считывать информацию со старших восьми регистров и наоборот.

Для изучения работы АЦП необходимо будет немного изменить схему.

pic24-14

Светодиод перенесем на RB4, а вход RA0, будем использовать для измерения напряжения. Для этого подключим потенциометр на 20 кОм к шинам питания контроллера, а сигнал с “движка” подадим на RA0.

Для настройки АЦП добавим в нашу программу следующие строки.

// настройка АЦП
        TRISA = 0b0000000000000001; // AN0 вход
	AD1PCFG=0b1111111111111110; // настроить AN0 на вход
	AD1CHS = 0x0000;            // AN0 подключить к CH0
        AD1CSSL = 0;
        AD1CON3 = 0b1000001100000000;
//                  ||||||||++++++++-- ADCS7:ADCS0: TCY/2
//                  |||+++++---------- SAMC4:SAMC0: 15 TAD время выборки
//                  |++--------------- не используется
//                  +----------------- внутрений генератор
        AD1CON2 = 0b0000000000000000;
//                  |||||||||||||||+-- ALTS:всегда использует MUX A входа
//                  ||||||||||||||+--- BUFM: один бафур на 16 регистров
//                  ||||||||||++++---- SMPI3:SMPI0: прерывание от каждого 1
//                  |||||||||+-------- не используется
//                  ||||||||+--------- BUFS: бит состояния
//                  ||||||++---------- не используется
//                  |||||+------------ CSCNA: сканирование входов выключено
//                  |||++------------- не используется
//                  +++--------------- VCFG2:VCFG0: опорное AVdd и AVss
        AD1CON1 = 0b1000000011100000;
//                  |||||||||||||||+-- DONE:
//                  ||||||||||||||+--- SAMP
//                  |||||||||||||+---- ASAM
//                  |||||||||||++----- не используется
//                  ||||||||+++------- SSRC2:SSRC0: от внутреннего тактового RC генератора запуск
//                  ||||||++---------- FORM1:FORM0: Целое (0000 00dd dddd dddd)
//                  |||+++------------ не используется
//                  ||+--------------- ADSIDL:Продолжить работу модуля в режиме ожидания
//                  |+---------------- не используется
//                  +----------------- ADON:1 - АЦП - включен
//----------------------------------------------------------------------

Эти строки позволяют настроить полностью АЦП и входы микроконтроллера, в этом примере мы задаем тактирование от внутреннего RC-генератора АЦП. В основном необходимые пояснения сделаны в комментариях.

Для преобразования числа в символы, будем использовать следующую функцию:

void bin_dec(int data,char mode,char vyv,char raz);

где, data число в диапазоне от -9999 до +32768
mode – положение десятичной точки 0- нет точки, 1-4 после 2-4 знакоместа
vyv – не печатать пустые знакоместа 0-печатать все 5 знакомест, 1-не печатать
raz – размер выводимых цифр 0/1-нормальные, 2-7 увеличение в соответствующее раз

Логика преобразования числа в символ простая, необходимо математически выделить число и преобразовать его в код

    // преобразование числа в символ
    dtys=data/10000+0x30;
    tysc=data%10000/1000+0x30;
    sotn=data%1000/100+0x30;
    dest=data%100/10+0x30;
    edin=data%10+0x30;

А теперь сам процесс измерения. Изменение будем проводить когда контроллер спит, чтобы уменьшить цифровой шум, это как один из вариантов работы, хотя можно было сделать вариант усреднение результатов измерения, благо 16 регистров имеется.

Первое включит прерывание от АЦП

        _AD1IE = 1;

Создадим функцию прерывания, только сброс бита прерывания

void __attribute__ ((__interrupt__, __auto_psv__)) _ADC1Interrupt(void)
{
    IFS0bits.AD1IF = 0;
}

И сам процесс измерения, один из вариантов

        AD1CON1bits.ASAM = 1; // запустить авто измерения
        Sleep ();
        Nop();
        AD1CON1bits.ASAM = 0;  // остановить

        ADCValue = ADC1BUF0;   // загрузить данные измерения из буфера
 //---------------------------

Запускаем автоматическое измерение и переходим в спящий режим, чтобы при измерении избавиться от цифрового шума микроконтроллера. Ждем прерывания от АЦП. По прерыванию микроконтроллер просыпается, сбрасывается флаг прерывания. Мы останавливаем измерение, считываем измеренное значение. Затем выводим полученное значение на дисплей и т.п. После этого весь процесс измерения повторяется.

 


Видео работы программы.

  


Проект, среда разработки MPLAB® X v1.70, компилятор С MPLAB XC16 v1.11.


I2C™ – INTER-INTEGRATED CIRCUIT и PIC24

Visits: 1061


Для работы с периферийными устройствам I2C™ просто незаменим. Дисплеи, память, драйверы и много другое…

В нашем примере мы будем подключать дисплей RDX077 (на драйвере UC1601S) к нашей макетной плате. Почему RDX077 – пока на настоящий момент, это самый доступный индикатор (для меня) с приемлемой ценой. Схема подключения:

pic24-10

RDX0077 – графический индикатора с драйвером UC1601s. В этой главе научимся выводить информацию на индикатор. Описывать сам драйвер UC1601s здесь не будем, будем создавать библиотеку для работы с индикатором.

Первое что необходимо выбрать это модуль I2C, у нас подключен индикатор ко второму модулю. Индикатор может работать на скорости до 400 кГц, поэтому необходимо разобраться как настроить необходимую скорость в модуле. За скорость отвечает регистр I2C2BRG из описания мы можем видеть формулы для расчета скорости и таблица с приведенными расчетами.

pic24-11

 Для стандартных тактовых частот приведены расчетные данные:

Заданная частота шины Fscl

Fcy=Fosc/2 Значение в I2CxBRG Реальная частота Fscl
(Десятичное) (Hex)

100 kHz

16 MHz

157

9D

100 kHz

100 kHz

8 MHz

78

4E

100 kHz

100 kHz

4 MHz

39

27

99 kHz

400 kHz

16 MHz

37

25

404 kHz

400 kHz

8 MHz

18

12

404 kHz

400 kHz

4 MHz

9

9

385 kHz

400 kHz

2 MHz

4

4

385 kHz

1 MHz

16 MHz

13

D

1.026 MHz

1 MHz

8 MHz

6

6

1.026 MHz

1 MHz

4 MHz

3

3

0.909 MHz

Будем использовать максимальную возможную скорость шины 400 кГц.

Во всех новых моделях микроконтроллеров в основном по два модуля I2C. В нашем варианте подключение производиться к модулю 2. Для работы с  индикатором нам понадобиться написать 7 функций по работе с интерфейсом. Некоторое отличие от стандартных функций будет состоять в том, что они будут ориентированы на модуль 2, а также формирование состояния старт будет объедено с указанием для драйвера индикатора записью адреса и  инициализацию типа передачи и команды запись или чтение.

Для работы с многими устройствами I2C я обхожусь своими самодельными функциями, почему самодельными, потому что я знаю как они работают и что от них можно ожидать:

Команда начальной инициализации модуля

void I2C_Open (unsigned int FCLOCK);// инициализация, значение частоты шины в килогерцах (например, 100,150,200….400)
настраивает работу модуля.

Команда стоп

void i2c_stop (void); // формирование стоп

Две команды старт

unsigned char i2c_start (unsigned char adres, unsigned char C_D, unsigned char R_W); // адрес устройства и управление младшими битами
unsigned char i2c_restart (unsigned char adres, unsigned char C_D, unsigned char R_W);

Команда записи байта данных

unsigned char i2c_write (unsigned char data); //запись байта

И две команды чтения

unsigned char i2c_read_ack (void); //чтение с подтверждением
unsigned char i2c_read_noack (void); //чтение без подтверждения

Мое мнение такое чем их меньше тем проще. Для работы с индикатором необходимо сделать библиотеку которая бы упрощала вывод на дисплей символьной информации и графики. О создании библиотеки говорить не буду это не интересно скачать её можно из раздела библиотеки. В этой главе мы ограничимся примером для демонстрации вывода на индикатор текста и графических примитивов.

Первое, что всегда в таких вариантах появляется желание что бы на индикаторе, что нибудь отобразилось. В библиотеке есть функция вывода строк на дисплей String_LCD её формат, на примере:

String_LCD (" Привет Мир!",0,1,2,-1,25);
                   |       | | |  |  +- высота строки по координате Y
                   |       | | |  +---- координата X, -1 команда выровнять строку по центру.
                   |       | | +------- высота символов 2 (двойная)
                   |       | +--------- ширина символов 1 (одинарная)
                   |       +----------- нормальное изображение (черным по белому писать)
                   +------------------- сам текст длина не более 254 символа максимум.

Теперь все уже понятно и первая программа для работы с графическим LCD на драйвере на драйвере UC1601S будет выглядеть так:

//-----------------------------------------------------------
	_LATA3 = 1;// включение подсветки дисплея.
//-----------------------------------------------------------
//настройка i2c
	I2C_Open(400);	// Скорость I2C на 400 кГц			
	int_LCD();	// инициализация LCD;
	clear_LCD(0);	// заливка (очистка индикатора)
//-----------------------------------------------------------
	clear_LCD(2);	// заливка
	// белый прямоугольник	
	rectangle(0,0,2,0, 5, 5, 115, 53);
	String_LCD (" Привет Мир!",0,1,2,-1,25);
	rectangle(0,0,2,0, 10, 10, 105, 43);        
	rectangle(1,0,2,0, 15, 15, 95, 33);

Думаю для начала этого более чем достаточно.


Результат работы программы:

pic24-12

Теперь необходимо скачать проект и поэкспериментировавший с выводом сообщений и графики.


Описание библиотеки в разделе Библиотеки.  Демонстрационное видео функций библиотеки.

 


Файлы для загрузки

Демопроект с полным текстом + библиотека (графические примитивы и символы).[wpdm_file id=66 template=”link-template-calltoaction3.php”]



Это может быть интересно


  • LED драйвер TM1639LED драйвер TM1639
    Visits: 2140 TМ1639 позволяет работать на матрицу 8*8 или 8 семисегметных индикаторов. Может работать как на индикаторы с общим катодом, но и есть возможность подключать общим анодом. Для управления драйвером …
  • Цифровой тахометр для автомобиля CH-С3300Цифровой тахометр для автомобиля CH-С3300
    Visits: 1870  Тахометр Ch-С3300 предназначен для индикации и контроля оборотов, времени работы и максимальных оборотов развиваемых двигателем во время поездки. Датчиком может использоваться как обычный контактный прерыватель или выход датчика …
  • Регулятор влажностиРегулятор влажности
    Visits: 1351 Регулятор ILLISSI-CH-1000 предназначен для контроля и регулировки относительной влажности в диапазоне от 0 до 100%. Регулятор позволяет работать как в режиме осушения, так и увлажнения. Для измерения возможно …
  • Altium Designer my setup system and project structureAltium Designer my setup system and project structure
    Visits: 590 Используйте только последнее обновление!!! Updates https://catcatcat.d-lan.dp.ua/altium-designer-my-libraries-project-templates-system-settings-by-catcatcat-v23-09/        Тут хочу поделиться как я настраиваю Altium Designer и как я использую файлы DXPPreferences.DXPPrf для быстрой конфигурации и получения …
  • MCC PIC24 – модуль REAL-TIME CLOCK AND CALENDAR (RTCC)MCC PIC24 – модуль REAL-TIME CLOCK AND CALENDAR (RTCC)
    Visits: 435 RTCC предоставляет пользователю часы реального времени и функция календаря (RTCC), точность “хода” может быть откалибрована. Основные особенности модуля RTCC: • Работает в режиме глубокого сна. • Возможность выбора источника …
  • Проект с использованием MCC часть 13Проект с использованием MCC часть 13
    Visits: 1001 Так как используя MCC мы можем его использовать со своими библиотеками, поэтому настало время и свое создать. Для начала откроем наш заголовочный файл в нем очень много букв: По …
  • TM1650 драйвер LED семисегментного индикатораTM1650 драйвер LED семисегментного индикатора
    Visits: 17673 Китайский производитель Shenzhen Titan Micro Electronics Co., Ltd.  Выпускает широкую линейку драйверов управления светодиодными дисплеями, которые позволяют разгрузить микроконтроллер для основной работы, главная особенность этих драйверов не только …
  • Проект с использованием MCC часть 06Проект с использованием MCC часть 06
    Visits: 1218 Изменим схему следующим образом добавим две тактовые кнопки BT1 и BT2. Теперь переключимся на конфигурацию выводов, для этого сделаем двойной клик в окне Ресурсы проекта на Pin Module. …
  • PIC18F25K42 – v. A001 – выявленные баги.PIC18F25K42 – v. A001 – выявленные баги.
    Visits: 578 Модуль I2C Не работает при использовании в стандартной конфигурации MCC. Требует особой нестандартной конфигурации и управления для нормальной работы. Обойти Обход проблемы возможен библиотека см статью. Модуль ADC2 На …
  • Дисплей KD035C-3A подключение и управлениеДисплей KD035C-3A подключение и управление
    Visits: 677 Дисплей KD035C-3A производиться компанией SHENZHEN STARTEK ELECTRONIC TECHNOLOGY CO.,LTD Характеристики Параметр Спецификация Единицы измерения Размер дисплея 70.08(H)*52.56(V) (3.5inch) mm Тип дисплея TFT active matrix Цветовая гамма 65K/262K colors Разрешение …


Output Compare – формирование импульсов

Visits: 942


Любое обучение преследует определенную цель и сейчас изучение разных возможностей, это цель создания определенного устройства, название которого будет раскрыто позже.

А пока надо научиться настраивать PIC-контроллер, для аппаратного формирования на выходе заданной частоты импульсов.

Для этого будем использовать модуль Output Compare. Он имеет возможность сравнивать значение выбранное времени (подразумевается значение таймер) со значение одного или двух регистров сравнения (в зависимости от выбранного режима). Кроме того, он имеет возможность формировать на выходе единичный импульс, или формировать непрерывную последовательность выходных импульсов, по заданным событиям. Как и большинство PICmicro ® периферийных устройств, он также имеет способность генерировать прерывания в момент события сравнения.

В нашем используемом для обучении контроллере (PIC24FJ64GA002) доступны 5 таких устройств. Все выходные каналы сравнения функционально идентичны. Обозначение они носят OC1 – OC5. Разработчики PIC24 подошли более глубоко к конфигурированию периферии, это связано необходимостью создания  возможности для подключения периферийного устройства к необходимым выводам микроконтроллера, таким подключением занимаются регистры настройки подключения периферийных устройств RPINR0 – RPINR23. В описании можно увидеть обозначение RP0, RP1… и так далее в зависимости от количества выводов микроконтроллера. Это выводы к которым могут быть подключены входы или выходы цифровых периферийных модулей. Естественно более конкретно, что может быть подключено, а что нет надо светиться с описанием на конкретный микроконтроллер. Функция подключения настолько гибки, что могут подключать один выход периферийного устройства к нескольким ножкам микроконтроллера или один вход, для разных периферийных устройств.

Схема, задача – на 26 ножке микроконтроллера получить меандр с заданной частотой.

pic24-09

В нашем случае мы конфигурируем выход OC1 на (RB15) 26 ножку микроконтроллера. Это вывод RP6. Наш выход Output Compare 1 (OC1) соответствует функциональному номеру 18 (все эти данные надо смотреть в описании). Прямая запись в регистры конфигурации настройки периферийных устройств невозможна, если установлен бит IOLOCK в регистре OSCCON (его функция еще связана с регистром конфигурации), это сделано для блокировки случайной их перенастройки в процессе работы. Если в регистре конфигурации предусмотрено возможность снятия этого бита после установки, то необходимо будет выполнить последовательность разблокирования.  Если попробовать выполнить запись в регистр конфигурации периферийных устройств с установленным битом IOLOCK, то такая запись будет выполнена, но значение регистров не измениться.

Сначала по порядку, за подключение к ножке 26 отвечает регистр RPOR7 в нем в старшем байте размещены биты управления функций RP15 (см. таблица 1-2)

Таблица 1-2.

Функция Номер ножки Регистр который отвечает за настройку выходных сигналов для указанной ножки контроллера Регистр выхода
RP0 4 RPOR0 RPOR0bits.RP0R
RP1 5 RPOR0 RPOR0bits.RP1R
RP2 6 RPOR1 RPOR1bits.RP2R
RP3 7 RPOR1 RPOR1bits.RP3R
RP4 11 RPOR2 RPOR2bits.RP4R
RP5 14 RPOR2 RPOR2bits.RP5R
RP6 15 RPOR3 RPOR3bits.RP6R
RP7 16 RPOR3 RPOR3bits.RP7R
RP8 17 RPOR4 RPOR4bits.RP8R
RP9 18 RPOR4 RPOR4bits.RP9R
RP10 21 RPOR5 RPOR5bits.RP10R
RP11 22 RPOR5 RPOR5bits.RP11R
RP12 23 RPOR6 RPOR6bits.RP12R
RP13 24 RPOR6 RPOR6bits.RP13R
RP14 25 RPOR7 RPOR7bits.RP14R
RP15 26 RPOR7 RPOR7bits.RP15R

Для настройки выхода Output Compare 1, необходимо записать в соответствующий регистр выхода, который связан с нужной нам ножкой контроллера значение 18 (см. таблицу 10-3).

Таблица 10-3.

Функция Номер функции Название выхода
NULL 0 NULL
C1OUT 1 Comparator 1 Output
C2OUT 2 Comparator 2 Output
U1TX 3 UART1 Transmit
U1RTS 4 UART1 Request To Send
U2TX 5 UART2 Transmit
U2RTS 6 UART2 Request To Send
SDO1 7 SPI1 Data Output
SCK1OUT 8 SPI1 Clock Output
SS1OUT 9 SPI1 Slave Select Output
SDO2 10 SPI2 Data Output
SCK2OUT 11 SPI2 Clock Output
SS2OUT 12 SPI2 Slave Select Output
OC1 18 Output Compare 1
OC2 19 Output Compare 2
OC3 20 Output Compare 3
OC4 21 Output Compare 4
OC5 22 Output Compare 5

Тетерь если мы не устанавливали бит IOLOCK в регистре OSCCON, то настроить выход нам необходимо будет выполнить команду:

   RPOR7bits.RP15R=18;  //подключение выхода модуля Output Compare 1 к ножке 26 контроллера.

Если мы хотим это сделать когда бит IOLOCK уже установлен, и если такая возможность разрешена, сброс бита IOLOCK после установки в регистре конфигурации. При инициализации регистра конфигурации, должна быть сделана такая запись:

#pragma config IOL1WAY = OFF	// Блокировка регистра OSCCON: - после установки IOLOCK он может быть изменен с помощью последовательности разблокирования

То с начала надо сбросить бит IOLOCK, для чего надо выполнить последовательность разблокирования:

// снятие бита блокировки
	asm volatile ( "MOV #OSCCON, w1 \n" // копируем адрес регистра OSCCON в аккумулятор w1
				"MOV #0x46, w2  \n"	// загружаем значение 0x46 в аккумулятор w2
				"MOV #0x57, w3  \n"	// загружаем значение 0x57 в аккумулятор w3
				"MOV.b w2, [w1] \n"	// загружаем значение 0x46 из w2 в регистр OSCCON
				"MOV.b w3, [w1] \n"	// загружаем значение 0x57 из w3 в регистр OSCCON
				"BCLR OSCCON,#6");	// сбрасываем бит IOLOCK в регистре OSCCON

а затем выполнить команду

  RPOR7bits.RP15R=18;  //подключение выхода модуля Output Compare 1 к ножке 26 контроллера.

И если в дальнейшем надо заблокировать изменение настроек, то надо установить бит IOLOCK. Для этого выполните:

// установка бита блокировки
	asm volatile(	"MOV #OSCCON, w1	\n"
			"MOV #0x46,	w2 	\n"
			"MOV #0x57,	w3 	\n"
			"MOV.b w2,	[w1] 	\n"
			"MOV.b w3,	[w1] 	\n"
			"BSET OSCCON, #6" );

После того когда подключили наш модуль к ножке контроллера настроим его работу.

Модуль работает только в паре с таймером, который задает все временные параметры. Таймер, с которым может работать наш модуль, может быть Timer2 или Timer3. Один из них может быть выбран битом OCTSEL в регистре (OCxCON <3>).

Для настройки модуля Output Compare 1 предназначены три регистра:

  1. OC1CON – регистр управления.
  2. OC1R – регистр сравнения 1.
  3. OC1RS – регистр сравнения 2.

Регистр управление OC1CON – описание битов:

bit 13 – OCSIDL: отвечает за работу модуля в Idle режиме, если он установлен (1) модуль будет выключен в режиме ожидания, если сброшен (0), то будут продолжать работать в режиме ожидания.

bit 4 – OCFLT: бит состояния режима ШИМ (bit 2-0=111), актуален если модуль работает в режиме ШИМ. Если установлен (1) – произошла неисправность, если (0) – нет неисправности.

bit 3 – OCTSEL: бит выбора таймера для совместной работы, 1 = Timer3, 0 = Timer2.

bit 2-0 – выбор режима работы модуля.

111 = режим PWM, контроль неисправности включен
110 = режим PWM, контроль неисправности выключен
101 = Инициализация выходного контакта модуля низким уровнем, генерация непрерывных импульсов.
100 = Инициализация выходного контакта модуля низким уровнем, генерация одиночного импульса.
011 = Режим сравнения и переключение выхода в противоположное состояние
010 = Инициализация выходного контакта модуля высоким уровнем, после сравнения перевести в низкий уровень.
001 = Инициализация выходного контакта модуля низким уровнем, после сравнения перевести в высокий уровень.
000 = модуль отключен.

Для нашего варианта работы выберем работу с таймером 2 и настроем режим (101) – Инициализация выходного контакта модуля низким уровнем, генерация непрерывных импульсов. Настройка будет выглядеть следующим образом:

// настройка модуля Output Compare 1
	 	 OC1CON=0b0010000000010101;
//				 |||||||||||||+++-- OCM<2:0>: Инициализация выходного контакта модуля низким уровнем, генерация непрерывных импульсов
//				 ||||||||||||+----- OCTSEL: 0 = Timer2 
//				 |||||||||||+------ OCFLT: - флаг статуса (не используется в нашем режиме) 
//				 |||++++++++------- неиспользуемые 
//				 ||+--------------- OCSIDL: 1- режиме Idle отключен
//				 ++---------------- неиспользуемые

// тут задаем форму сигнала
		OC1R=0x007F;	// нарастание _/
		OC1RS=0x00FF;	// спад \

Настройка таймера:

// настройка таймера TMR2
		  T2CON=0b1010000000000000;
//				|||||||||||||||+-- неиспользуемый
//				||||||||||||||+--- TCS: 0 - внутрений генаратор FOSC/2
//				|||||||||||||+---- неиспользуемый 
//				||||||||||||+----- T32: 0- 16 битный режим 
//				||||||||||++------ TCKPS1:TCKPS0: пределитель 11-1:256
//				|||||||||+-------- TGATE: - отключен 
//				|||++++++--------- неиспользуемые 
//				||+--------------- TSIDL: 1- врежиме Idle отключен
//				|+---------------- неиспользуемый
//				+----------------- TON: 1 - таймер включен
		PR2=0x00FF;	// период счета

pic24-08

При таких настройках мы будем иметь выходную частоту 62,5 кГц, теперь приведем формулу для расчета требуемой частоты. Тактовая частота задается используемым таймером. Частота на выходе таймера определяется настройкой предделителя и значением регистра периода PR.

Fout = Ftakt/2/предделитель/значение PR. Наша тактовая 32 мГц. Предделитель 1:1, значение PR = 255.

Fout = 32 000 000 / 2 / 1 / 255 = 62745 Гц.


Проект для загрузки.

[box title=”Файлы для загрузки” color=”#521BDE”][wpdm_file id=157][/box]


Использование прерываний для управления процессами в PIC24

Visits: 1255


Во второй главе для управления светодиодами применялись макросы задержки, они “типа” стопорили работу процессора на пол секунды, после чего, контроллер выполнял необходимые команды по переключению светодиодов  и опять занимался тем что ожидал. в реальной жизни это непозволительная роскошь. Если контроллеру необходимо выполнять обработку информации, то наши задержки будут только стопорить его основную работу.

Для решение этой проблемы можно использовать прерывания, которые формирует аппаратный таймер и который работает независимо от функционирования центрального процессора. Одно из решений задачи, контроллер занимается основной задачей и циклически проверяет флаг который устанавливается когда выполняется прерывание от таймера. Если флаг установлен выполняется процедура “мигания” светодиодами  Если нет выполняется основная задача.

Основные различия от предыдущего проекта это при настройки таймера включение прерывания от таймера TMR1.

//---------------------------------------------------------------------------
// Настройка таймера TMR1
	 	 T1CON = 0b1000000000110000;
//				  |||||||||||||||+-- неиспользуемый
//				  ||||||||||||||+--- TCS: источник тактовых импульсов FOSC/2 
//				  |||||||||||||+---- TSYNC: состояние игнорируется, так как тактовая частота системный генератор  
//				  ||||||||||||+----- неиспользуемый 
//				  ||||||||||++------ TCKPS1:TCKPS0: настройка предделителя 11 = 1:256
//				  |||||||||+-------- TGATE: 0- режим измерение длительности входного импульса отключен 
//				  |||++++++--------- неиспользуемые
//				  ||+--------------- TSIDL: 0- продолжать работу в режиме ожидания (сна) 
//				  |+---------------- неиспользуемый
//				  +----------------- TON: 1 -таймер включен
 		PR1=0xFFFF;	// период счета
		_T1IF=0;	// очистить бит прерывания от таймера TMR1
		_T1IE=1;	// разрешить прерывание от таймера TMR1

//---------------------------------------------------------------------------

Создание функции прерывания от таймера TMR1.

// подпрограмма обслуживания прерываний от таймера TMR1
void __attribute__((__interrupt__, __auto_psv__)) _T1Interrupt(void)
{

	_T1IF=0;		// сброс флага прерывания от таймера TMR1
	Bit.MIG=1;
	
}//

А сам главный цикл программы теперь будет выглядеть так:

while(1)
	{
        ClrWdt();			// сброс сторожевого таймера

//-------------------------
// переключение светодиодов
		if(Bit.MIG)
       	{        
	       	if(Bit.NAG)
			{
	        	_LATA0 = 1; 	// выключить светодиод
	        	_LATB0 = 0;	// выключить светодиод
	     	 	Bit.NAG=0;
	      	}
	      	else
	      	{ 
	        	_LATA0 = 0; 	// выключить светодиод
	        	_LATB0 = 1;	// включить светодиод
			Bit.NAG=1;
			}

			Bit.MIG=0;
		}
//-------------------------	
	// основная программа в этом месте

	
	}

Расчет периода прерываний для таймера TMR1 (смотри в описании по работе с таймером).


Загрузка проекта

Значок

Использование прерываний для управления процессами в PIC24 45.72 KB 745 downloads

Использование прерываний для управления процессами...


Это может быть интересно

  • Trimax – кодирование и декодирование ИК-командTrimax – кодирование и декодирование ИК-команд
    Visits: 2127 Первое, что надо понять назначение кнопок клавиш пульта, а также, что за кодирование реализовано в ИК- пульте. Для назначения клавиш обратимся к описанию, а для взлома кодирования воспользуемся …
  • ch-4050 – дифференциальный терморегуляторch-4050 – дифференциальный терморегулятор
    Visits: 1833 ch-4050 – это не новая модель, это расширенная версия универсального терморегулятора ch-4000. Различия коснулись в появлении новой функции дифференциального регулирования. Это вид регулирования по разности температур измеренного двумя …
  • VU Meter Tower ART – part 2VU Meter Tower ART – part 2
    Visits: 948 Проект – VU Meter Tower ART получил продолжение в своем развитии. Теперь можно заказать набор деталей из акрила для самостоятельной сборки. В проект корпуса внесено целый ряд доработок, …
  • Стабилизатор тока для светодиодов SN3350Стабилизатор тока для светодиодов SN3350
    Visits: 2572 SN3350 ближайший аналог ZXLD1350 Как собрать готовый вариант, читайте во второй части – http://catcatcat.d-lan.dp.ua/stabilizator-toka-na-sn3350-chast-2/ 40V  драйвер светодиодов с внутренним ключом  SN3350 – импульсный понижающий преобразователь, разработанный для того, чтобы эффективно управлять одним или …
  • Простой сенсорный регулятор светаПростой сенсорный регулятор света
    Visits: 2289 Простой сенсорный регулятор. Проект – 2007 года. Регулятор выполнена на микроконтроллере PIC12F683 и имеет минимальное количество элементов. Выполняет стандартные функции, включение выключение света, изменение яркости, запоминание последнего установленного уровня …
  • CCP – модуль в режиме Compare на примере PIC18CCP – модуль в режиме Compare на примере PIC18
    Visits: 3055 CCP – модуль можно использовать в трех режимах: Capture – позволяет захватывать входной сигнал и определять его параметры (длительность или частоту). Дополнительно управлять внутренними модулями. Compare –  позволяет …
  • LATINO – открытый проект ch-светомузыкиLATINO – открытый проект ch-светомузыки
    Visits: 1631   Проект построенный на некоторых принципах ch-светомузыка. Проект ознакомительный предназначен, для самостоятельного построения простого и эффективного светосинтезатора. Вывод осуществляется на ВОУ собранной на драйверах HL1606. Для этого была …
  • Часы + Календарь + Термометр + …Часы + Календарь + Термометр + …
    Visits: 2664 Часы + Календарь + Термометр + Индикатор влажности + Секундомер + Дистанционное управление на ИК лучах (пульты на RC-5 протоколе) + Автоматическая регулировка яркости + Возможность вывода данных через USB, …
  • Altium Designer my Libraries, Project templates, System settings by Catcatcat V24.0 PROAltium Designer my Libraries, Project templates, System settings by Catcatcat V24.0 PRO
    Visits: 108 Назвемо цей варіант поновлення для професіоналів і не тільки. Що нового? 1. Повністю змінено структуру параметрів бази даних компонента. Це дозволило повноцінної роботи Актив ВОМ. Ви відразу отримуєте …
  • PIC32MZ – прерывания (заметки)PIC32MZ – прерывания (заметки)
    Visits: 437 Виды формирования запоминая контекста при входе в прерывания. Компилятор представляет три варианта AUTO – когда запоминания места возврата из подпрограммы возложено на программу, т.е все создается программно. Этот …


Формат данных XC16

Visits: 812


Для дальнейшей работы, понадобиться понятие переменных. Кратко чтобы не напрягать – название и размер данных:

Объявление Бит  Диапазон чисел Примечание 
Целочисленные типы
char 8 -128 … 127 со знаком
signed char 8 -128 … 127 со знаком
unsigned char 8 0 … 255 без знака
short 16 -32768 … 32767  со знаком
signed short 16 -32768 … 32767  со знаком
unsigned short 16 0 … 65535  без знака
int 16 -32768 … 32767 со знаком
signed int 16 -32768 … 32767 со знаком
unsigned int 16 0 … 65535 без знака
long 32 -2147483648 … 2147438647 со знаком
signed long 32 -2147483648 … 2147438647 со знаком
unsigned long 32 0 … 4294867295 без знака
long long**, signed long long** 64 -9223372036854775808…9223372036854775807 со знаком
unsigned long long** 64 0…18 446 744 073 709 551 615 без знака
   
Для арифметики с плавающей запятой  
float 32  1.175494e-38 … 3.40282346e+38
double* 32 1.175494e-38 … 3.40282346e+38
long double 64 2.22507385e-308 … 1.79769313e+308

* * ANSI-89 extension
* double is equivalent to long double if -fno-short-double is used.


Исследуем формирования задержки

Visits: 2854


Сама задержка или ожидание чего-то не самая популярная вещь в программировании, ведь она просто тратит машинное время в пустую. Но как ни крути, время от времени её необходимо использовать. Как видим одним из удобных вариантов формирования задержки нам предоставляет стандартная библиотека libpic30.h в виде трех макросов:

__delay32 – формирование задержки в тактах процессорного времени.

пример: __delay32(NNN); где NNN – unsigned long циклов, минимальное число 12 циклов, если значение меньше 12, то все равно будет задержка в 12 циклов (12-4294967295).

__delay_ms – формирование задержки в миллисекундах.

пример: __delay_ms(NNN); где NNN – unsigned int – миллисекунд (0-65536).

__delay_us – формирование задержки в микросекундах.

пример: __delay_us(NNN); где NNN – unsigned int – микросекунд (0-65536).

Для макросов __delay_ms и __delay_us необходимо сделать определение и указать рабочую тактовую частоту контроллера, сделать это надо до “вставки” библиотеки (типа так):

//
#define FCY 32000000UL	// определение тактовой частоты для макросов __delay_ms() и __delay_us()
#include 	// библиотека функций
//

Существуют разные возможности формирования задержек при помощи встроенных таймеров, но как показала практика, ни в эффективности,  ни в практичности они уступают макросам. Во первых расходуется больше памяти, во вторых задействован сам таймер, который может использоваться для других целей.

Но для расширения кругозора, приведем пример, решения нашей задачи из прошлой главы с миганием светодиодов.

Для начала необходимо включить в работу сам таймер (работу самого таймера будет рассмотрено позже):

//---------------------------------------------------------------------------
// Настройка таймера TMP1
	 	 T1CON = 0b1000000000110000;
//				  |||||||||||||||+-- неиспользуемый
//				  ||||||||||||||+--- TCS: источник тактовых импульсов FOSC/2 
//				  |||||||||||||+---- TSYNC: состояние игнорируется, так как тактовая частота системный генератор 
//				  ||||||||||||+----- неиспользуемый 
//				  ||||||||||++------ TCKPS1:TCKPS0: настройка предделителя 11 = 1:256
//				  |||||||||+-------- TGATE: 0- режим измерение длительности входного импульса отключен 
//				  |||++++++--------- неиспользуемые
//				  ||+--------------- TSIDL: 0- продолжать работу в режиме ожидания (сна) 
//				  |+---------------- неиспользуемый
//				  +----------------- TON: 1 -таймер включен
 		PR1=0xFFFF;	// период счета
//

 После такого включения таймера можно выполнить формирования задержки следующим образом:

//
		TMR1=0;
		while(TMR1 < 60000);
//

А сам главный цикл из прошлой главы может быть иметь такой вид:

//
while(1)
	{

        ClrWdt();		// сброс сторожевого таймера
        
        _LATA0 = 0;        	// выключить светодиод
        _LATB0 = 1;        	// включить светодиод
		
		TMR1=0;
		while(TMR1 < 60000);

      //  __delay_ms(500); 	// ждать 0,5 секунды
        
        _LATA0 = 1;        	// включить светодиод
        _LATB0 = 0;        	// выключить светодиод
		
		TMR1=0;
		while(TMR1 < 60000);
	
       // __delay_ms(500); 	// ждать 0,5 секунды

	}
//

Всем желающим можно попробовать этот вариант. Хотя как я уже говорил, он не эффективен.



Это может быть интересно


  • Простой цифровой милливольтметр постоянного токаПростой цифровой милливольтметр постоянного тока
    Visits: 4020 Простой цифровой вольтметр постоянного тока. Три диапазона измерений с автоматическим переключением 1 – 0,001 – 0,999 V, 2 – 0,01-9,99 V, 3 – 0,1-99,9. Четыре управляемых выхода с возможностью задания функции контроля …
  • Arduino LCD + STONE STVI056WT-01 + Strain gaugeArduino LCD + STONE STVI056WT-01 + Strain gauge
    Visits: 419 Author li grey email: greyli1987@outlook.com The strain assessment instrument is used to assess the degree of corresponding muscle strain by obtaining the muscle surface action potential through silver …
  • MCC PIC24 – модуль OUTPUT COMPARE – в режиме генератора звуковых сигналовMCC PIC24 – модуль OUTPUT COMPARE – в режиме генератора звуковых сигналов
    Visits: 586 При проектировании простых устройств автоматики, часто необходимо иметь механизм звукового оповещения. Самый верхний уровень, это формирование голосовых сообщений, но об этом, как то по позже… В самом примитивном …
  • Altium Designer – подготовка документации для производства и сборки печатных платAltium Designer – подготовка документации для производства и сборки печатных плат
    Visits: 3597 В процессе освоения Altium Designer много возникает вопросов по подготовке документации для производства плат, а также для её сборки. Altium Designer позволяет сделать все требуемые документы, хотя скажем …
  • CLUBBEST-50-LightCLUBBEST-50-Light
    Visits: 213 CLUBBEST-50-LIGHT   Зміст Короткий опис проекту. 1 Опис схемотехніки візуалізатора музики. 2 Аудіо вхід. 3 MCU. 4 Цифровий вихід. 5 Схема живлення MCU. 6 Складання пристрою. 7 Список …
  • Гаджеты для домашней автоматики – Датчик движенияГаджеты для домашней автоматики – Датчик движения
    Visits: 1416 Управление светодиодным освещением – Датчик движения. Данный гаджет предназначен для управления освещением рабочих столов (кухонных столов), освещение прихожих, освещение зеркал в прихожих, автоматическое включение света в коридорах. Датчик позволяет …
  • Защита датчиков температуры DS18B20 от статического электричестваЗащита датчиков температуры DS18B20 от статического электричества
    Visits: 1791 Статья перепечатана с сайта http://svetomuzyka.narod.ru При удалении датчика на большие расстояния возникает опасность наведения импульсов высокого напряжения на кабель, который соединяет датчик с контролером. Если не принимать меры защиты, …
  • Проект с использованием MCC часть 08Проект с использованием MCC часть 08
    Visits: 986 И так создадим проект в котором при помощи двух кнопок мы сможем управлять яркостью светодиодов. При использовании МСС у нас лафа полная, добрые дяди с Microchipa подготовили функции, …
  • Altium Designer my Libraries, Project templates, System settings by Catcatcat V23.04Altium Designer my Libraries, Project templates, System settings by Catcatcat V23.04
    Visits: 157 Смотри как установить и подключить библиотеку тут.   V.  – 23_04 – Component Database Update. – configuration file name – DXPPreferences1.DXPPrf. – Added two projects for audio amplifier …
  • Дисплей KD035C-3A подключение и управлениеДисплей KD035C-3A подключение и управление
    Visits: 677 Дисплей KD035C-3A производиться компанией SHENZHEN STARTEK ELECTRONIC TECHNOLOGY CO.,LTD Характеристики Параметр Спецификация Единицы измерения Размер дисплея 70.08(H)*52.56(V) (3.5inch) mm Тип дисплея TFT active matrix Цветовая гамма 65K/262K colors Разрешение …


Первая программа на PIC24

Visits: 2023


При написании первой программы всегда начинает вопрос с чего начать. Пропустим весь процесс установки среды программирования так ка считаем, что это пройденный этап. Программировать будем учиться на языке С XC16. Я считаю для начинающих, это самый простой вариант для обучения, так как ассемблер для 16 разрядных более сложен для понимания, чем для 8 разрядных PIC-контроллеров.

Первое, что необходимо, это какие необходимы начальные строки, чтобы компилятор понял, что мы от него хотим. Первая строка:

#include <xc.h>             // подключение процессора

А хотим мы от него, что бы он выбрал из настроек среды MPLAB с каким контроллером мы работаем.

Дальше, для уменьшения наших мук, будем использовать библиотеку libpic30. Поэтому включим следующие две строчки, в первой – разъясняем компилятору какая у нас тактовая частота. Вторая, что будем использовать библиотеку.

#define FCY 32000000UL	// определение тактовой частоты для макросов __delay_ms() и __delay_us()
#include <libpic30.h>	// библиотека функций

Определение тактовой частоты полезно настройки для макросов __delay_ms() и __delay_us().

Теперь надо настроить регистр конфигурации контроллера. Каждая строка имеет комментарий описывающий назначение. В двух словах – используем внутренний генератор с умножителем, запустим сторожевой, таймер. Для чего? Чтобы научиться с первых шагов с ним работать!

//---------------------------------------------------------------------------
// конфигурирование контроллера

#pragma config POSCMOD = NONE	// Главный генератор отключен
#pragma config I2C1SEL = PRI	// Использовать SCL1/SDA1 контакты по умолчанию
#pragma config IOL1WAY = OFF	// Впоследствии состояние IOLOCK может быть изменено с помощью разблокировки
#pragma config OSCIOFNC = ON	// OSC2/CLKO/RC15 функциями, как порт ввода / вывода (RC15)
#pragma config FCKSM = CSDCMD	// Переключатель генератора отключен, Fail-Safe монитор генератора отключен
#pragma config FNOSC = FRCPLL	// Тактирование от внутреннего скоростного генератора через умножитель PLL - (FRCPLL) 
#pragma config SOSCSEL = LPSOSC	// Вторичный генератор внутренний низкоскоростной 31 кГц LPRC  генератор (LPSOSC)
#pragma config WUTSEL = FST		// Быстрый пробуждения таймер
#pragma config IESO = OFF		// IESO режим (две скорости запуска) отключены
#pragma config WDTPS = PS1024	// Сторожевой таймер Postscaler
#pragma config FWPSA = PR128	// Сторожевой таймер Prescaler соотношении 1: 128
#pragma config WINDIS = ON		// Оконный режим сторожевого таймера - отключен
#pragma config FWDTEN = ON		// Сторожевой таймер выключен
#pragma config ICS = PGx1		// Эмулятор EMUC1/EMUD1 выводы совместно с PGC1/PGD1
#pragma config COE = OFF		// Сброс в рабочий режим
#pragma config BKBUG = OFF		// Устройство сбрасывает в рабочий режим
#pragma config GWRP = OFF		// Запись в память программы отключены
#pragma config GCP = ON			// Код защита включена для всего пространства памяти программы
#pragma config JTAGEN = OFF		// JTAG порт отключен

Сама первая программа это показать для самого себя, что контроллер начал работать, а для этого мы будем использовать индикацию на наших светодиодах подключенных портам (см. схему).

Программа, практически всегда, должна начинаться с настройки основного генератора, после этого необходимо перейти к настройке портов ввода вывода, а после можно перейти к этого основному циклу, в котором будет “вечно” работать наше устройство.

Настройка тактового генератора:

// настройка тактового генератора
		  OSCCON=0b00000111000000001;
//				 |||||||||||||||+-- OSWEN: выбор генератора определяется в регистре конфигураций
//				 ||||||||||||||+--- SOSCEN: вторичный внутренний генератора 32 кГц отключен
//				 |||||||||||||+---- неиспользуемый
//				 ||||||||||||+----- CF: флаг детектора сбоя тактового генератора
//				 |||||||||||+------ неиспользуемый
//				 ||||||||||+------- LOCK: флаг состояния работы PLL модуля
//				 |||||||||+-------- IOLOCK: блокировка активна
//				 ||||||||+--------- CLKLOCK: часы и PLL выбор не заблокирован 
//				 |||||+++---------- NOSC2:NOSC0: новый генартор 001 - Тактирование от внутреннего скоростного генератора через умножитель PLL - (FRCPLL) 
//				 ||||+------------- неиспользуемый
//				 |+++-------------- COSC2:COSC0: текущий генаратор 001 - Тактирование от внутреннего скоростного генератора через умножитель PLL - (FRCPLL) 
//				 +----------------- неиспользуемый
// настройка регистра делителя тактовой частоты				 
		  CLKDIV=0b0000000000000000;
//				 ||||||||++++++++-- неиспользуемые
//				 |||||+++---------- RCDIV2:RCDIV0:постделитель - 000 = 8 MHz (divide by 1)
//				 ||||+------------- DOZEN: делитель отключен, тактирование 1:1 (первый делитель тактовой частоты)
//				 |+++-------------- DOZE2:DOZE0: - 1:1
//				 +----------------- прерывания не влияют DOZEN
// регистр калибровки внутреннего тактового генератора
		OSCTUN=0;

По регистру OSCCON хотелось бы добавить, пока мы не трогаем флаг блокировки IOLOCK, он будет вести себя как обычный регистр, но если его установить, то в зависимости от условий в регистре состояния, мы или не сможем его в последствии программе изменить или нам придется выполнять последовательность разблокирование для того чтобы, в нем что-то изменить.

Настройка портов:

		AD1PCFG = 0xffff;	// все выводы цифровые		

		TRISA = 	0;		// разряды порта A на выход
		TRISB = 	0;		// разряды порта B на выход

И сам главный цикл программы, в нем мы используем банальную задержку для управления анимации светодиодов.

while(1)
	{

        ClrWdt();		// сброс сторожевого таймера

        _LATA0 = 0;        	// выключить светодиод
        _LATB0 = 1;        	// включить светодиод

        __delay_ms(500); 	// ждать 0,5 секунды

        _LATA0 = 1;        	// включить светодиод
        _LATB0 = 0;        	// выключить светодиод

        __delay_ms(500); 	// ждать 0,5 секунды

	}

 Первая программа – мигание светодиода, для встроенных систем, это как “Привет Мир”. Светодиод мигает – мир радуется!


Демонстрационное видео

 


Проект для загрузки

Значок

Первая программа на PIC24 41.56 KB 1084 downloads

Первая программа на PIC24 ...


Это может быть интересно

  • MPLAB® Harmony – или как это просто! Часть 1.MPLAB® Harmony – или как это просто! Часть 1.
    Visits: 3530 Часть первая – Установка Гармонии. Музыкальная тема к статье, слушаем: В начале запуска нового проекта и выбора микроконтроллера стоит задача правильно его сконфигурировать, прежде чем перейти к реализации …
  • VU Meter Tower ART – part 2VU Meter Tower ART – part 2
    Visits: 948 Проект – VU Meter Tower ART получил продолжение в своем развитии. Теперь можно заказать набор деталей из акрила для самостоятельной сборки. В проект корпуса внесено целый ряд доработок, …
  • Проект с использованием MCC часть 12-2Проект с использованием MCC часть 12-2
    Visits: 984 Настало время для изучения шины I2C. Изучать будем на примере работы с индикатором RET012864E. Что изменили со старой схемы: В прошлой теме я затупил и не добавил подтягивающие резисторы …
  • USB K-L-line адаптерUSB K-L-line адаптер
    Visits: 5924 USB K-L-line адаптер предназначен для связи персонального компьютера с диагностической шиной автомобиля – интерфейс ISO-9141. Этот проект предназначен для сборки недорого устройства с использованием специально для этой цели …
  • Altium Designer my Libraries, Project templates, System settings by Catcatcat V24.0 PROAltium Designer my Libraries, Project templates, System settings by Catcatcat V24.0 PRO
    Visits: 108 Назвемо цей варіант поновлення для професіоналів і не тільки. Що нового? 1. Повністю змінено структуру параметрів бази даних компонента. Це дозволило повноцінної роботи Актив ВОМ. Ви відразу отримуєте …
  • Проект с использованием MCC часть 11Проект с использованием MCC часть 11
    Visits: 800 Можно несколько облагородить программу вынести наши процедуры обработки нажатия кнопок в отдельные функции. Но вы должны понимать, что это хоть и не значительно, но будет тормозить общую скорость …
  • NeoPixel LED and PIC24NeoPixel LED and PIC24
    Visits: 593 Популярность однопроводной шины для управления светодиода типа WS2812 не ослабевает, а новые типы светодиодов в корпусах 3,5*3,5мм, 2,0*2,0мм становяться все больше привлекательными. Построение дисплеев для анимации требуют все …
  • Ultrasonic Level Meters – ULM –53LUltrasonic Level Meters – ULM –53L
    Visits: 697 Измерение расстояния при помощи ультра звукового датчика ULM–53L–10. Диапазон измерения от 0,5 м до 10 м, полностью пластмассовый излучатель PVDF, механическое соединение фланцем из полиэтилена HDPE (исполнение “N”) Характеристики …
  • Trimax – кодирование и декодирование ИК-командTrimax – кодирование и декодирование ИК-команд
    Visits: 2127 Первое, что надо понять назначение кнопок клавиш пульта, а также, что за кодирование реализовано в ИК- пульте. Для назначения клавиш обратимся к описанию, а для взлома кодирования воспользуемся …
  • Регулятор влажности ch-3800Регулятор влажности ch-3800
    Visits: 1382   И еще один проект на плате ch-c3xxx –  универсальный регулятор влажности ch-3800. Регулятор позволяет работать как в режиме индикатора влажности, так и в режиме регулятора. Рабочий диапазон …


Как запитать и подключить к программатору PIC24

Visits: 1666


Для обучения будем использовать PIC24FJ64GA002. Его особенность – низкая цена, 28 выводов, диапазон питания 2,0-3,6 вольта.  Для питания будем использовать источник 3,3 вольта. А так как ядро контроллера работает при напряжении 2,5 вольта, мы должны оставить включенным внутренний регулятор напряжения, для этого к выводу Vcap/Vddcore подключить керамический конденсатор 10,0 мкФ. А вывод DISVREG – подключить к Vss (к общему).

Для подключения к программатору у контроллера есть три альтернативных варианта подключения.

Первый вариант подключения.

pic24-02

Второй вариант подключения.

pic24-03

Третий вариант и первая схема для обучения по работе с PIC24.

pic24-04

 Для индикации мы подключим к портам RA0, RA1, RB0, RB1 светодиоды для контроля работы программы. Для питания можно использовать любой 3,3 вольтовый стабилизатор. Для макетирования была применена плата ILLISSI-M4B01

Макетная плата для 28 ногих PIC контроллеров

Макетная плата в сборе для тестирования и обучения.

 pic24-05 pic24-06

 Полная схема, со стабилизатором.

pic24-07

 CON1 предназначен для подключения к программатору, CON2 для подачи питания на микроконтроллер.

Если схема собрана правильно, надо переходить к написанию первой программы.


Изучаем PIC24, компилятор XC16

Visits: 4682


С чего начать и с чего приступить к изучению 16 разрядных PIC-микроконтроллеров.

Первое, это надо разобраться как установить среду программирования и сам компилятор Си, в нашем варианте это MPLAB IDE v8.89 и MPLAB XC16 v1.11.

Второе, приобрести PIC-контроллер, я использовал PIC24FJ64GA002.

Третье, макетную плату и всякую россыпуху и не только.


pic24-05

Чего не стоит искать здесь.

Здесь не стоит искать изучение языка Си, здесь только практические советы, по необходимости, все можно конечно объяснить и помочь понять, для этого задавайте вопросы на форуме http://musiccolor.d-lan.dp.ua/.


Статьи:

  1. Как подключить питание и подключение для внутрисхемного программирования PIC24.
  2. Настройка тактового генератора.
  3. Первая программа на PIC24.
  4. Исследуем формирования задержки.
  5. Объявление переменных – Формат данных.
  6. Использование прерываний для управления процессами.
  7. Output Compare – формирование импульсов.
  8. I2C™ – INTER-INTEGRATED CIRCUIT и PIC24.
  9. 10-бит, высокоскоростной, аналого-цифровой преобразователь, часть 1.
  10. 10-бит, высокоскоростной, аналого-цифровой преобразователь, часть 2.
  11. Измерение частоты.
  12. PIC24 и работа с SD/MMC картами памяти.
  13. Часы реального времени DS1340.
  14. Энкодер и его применение.
  15. Контроллер DMA (Direct Memory Access).
  16. Визуализация данных.
  17. Многокнопочная клавиатура.
  18. Внешний АЦП ADS1230 и PIC24FJ64GA004.
  19. … продолжение следует …