

I. Overview

TM1629B is a kind of LED driver control IC with keyboard scan interface, which is integrated with MCU digital interface, data latch, LED driver, keyboard scan and other circuits. This product has reliable quality, good stability and strong anti-interference ability. It is mainly suitable for home appliances (intelligent water heater, microwave oven, washing machine, air conditioner, induction cooker), set top box, electronic scale, smart meter and other digital tube or LED display equipment.

II. Characteristic description

- · Using CMOS technology
- · Display mode 14 segments × 8 bits
- Maximum support matrix key 8 × 2
- · Brightness adjustment circuit (duty cycle 8 levels adjustable)
- · Serial interface (CLK, STB, DIO)
- · Oscillation mode: built in RC oscillation
- · Built in power on reset circuit
- · Built in data latch circuit
- · Strong anti-interference ability
- · Built in optimization circuit for LED reverse bias leakage leading to dark and bright problem
- •Package form: SOP32

III. Pin definition

GRID4	1	\bigcup	32		GRID5
GRID3	2		31		GRID6
GND	3		30		GND
GRID2	4		29		GRID7
GRID1	5		28		GR1D8
GND	6		27		VDD
DIO [7	TM1629B	26		SEG14
CLK	8	(TOP VIEW)	25		SEG13
STB	9		24		SEG12
КО 🗀	10		23		SEG11
K1	11		22		SEG10
VDD	12		21		SEG9
SEG1/KS1	13		20		KS8/SEG8
SEG2/KS2	14		19		KS7/SEG7
SEG3/KS3	15		18		KS6/SEG6
SEG4/KS4	16		17		KS5/SEG5
	Ь			Į.	

- 2 -

IV. Pin description

escription			
Symbol	Pin name	Pin No.	Explain
DIO	Data output input	7	Input serial data at the rising edge of the clock, starting from the low bit. The serial data is output on the falling edge of the clock, starting from the low bit. The output is n-tube open drain output, external need to connect 1-10k Ω Pull up resistor to VCC
CLK	Clock input	8	The serial data is read on the rising edge and output on the falling edge
STB	Selected films	9	Initialize the serial interface on the falling edge, and then wait for the command to be received. STB is the first byte after low as an instruction. When the instruction is processed, other current processing is terminated. When STB is high, CLK is ignored
K0∼K1	Key scan data input	10~11	The data input to the pin is locked after the end of the display cycle, with a built-in 7.3k Ω Pull down resistance
SEG1/KS1 \sim SEG8/KS8	Output (segment)	13~20	Segment output (also used as key scan), p-tube open drain output, built-in $3.6k\ \Omega$ Pull down resistance
SEG9∼SEG14	Output (segment)	21~26	Section output, p-tube open drain output, built-in 3.6k Ω Pull down resistance
GRID1 \sim GRID2 GRID3 \sim GRID4 GRID5 \sim GRID6 GRID7 \sim GRID8	Output (bit)	5~4 2~1 32~31 29~28	Bit output, n-tube open drain output, built-in 2.8k Ω Pull up resistor
VDD	Logic power supply	27,12	Connected to power supply
GND	Logic place	3,6,30	Grounding system

▲Note: 1, DIO port output data for n tube open drain output, in the key reading time need external 1k-10k pull-up resistance. The company recommends 10K pull-up resistor. Dio controls the action of n-tube at the falling edge of the clock. At this time, the reading is unstable, and the reading is stable at the rising edge.

V. Instructions:

The command is used to set the display mode and the status of the LED driver.

The first byte entered by DIN after the falling edge of STB is used as the instruction. After decoding, the highest B7 and B6 bits are selected to distinguish different instructions.

В7	В6	Instructions
0	1	Data command settings
1	0	Display control command settings
1	1	Address command settings

If STB is set to high level at the time of instruction or data transmission, serial communication is initialized, and the instruction or data being transmitted is invalid (the instruction or data transmitted previously remains valid).

(1) Data command settings:

This instruction is used to set the data write and read, B1 and B0 bits are not allowed to set 01 or 11.

MSE	3						LSB		
В7	В6	B5	B4	В3	B2	B1	В0	Function	Explain
0	1					0	0	Data read / write mode	Write data to display register
0	1	Irrele	evant			1	0	setting Address increase mode setting	Read key scan data
0	1	items,			0			Mode setting Data read /	Automatic address increase
0	1				1			write mode setting	Fixed address
0	1			0				Address increase mode setting	Normal mode

(2) Display control command settings:

This command is used to set the switch of display and adjust the brightness of display. There are 8 levels of brightness to choose from.

MSB							LSB		
В7	В6	B5	В4	В3	B2	B1	В0	Function	Explain
1	0				0	0	0		Set the pulse width to 1 / 16
1	0	Irrele item	evant s, fill		0	0	1	Extinction quantity	Set the pulse width to 2 / 16
1	0	in	0		0	1	0	setting	Set the pulse width to 4 / 16
1	0				0	1	1		Set the pulse width to

TM1629B

-4-

							10 / 16
1	0		1	0	0		Set the pulse width to 11 / 16
1	0		1	0	1		Set the pulse width to 12 / 16
1	0		1	1	0		Set the pulse width to 13 / 16
1	0		1	1	1		Set the pulse width to 14 / 16
1	0	0				Display switch	Display off
1	0	1				settings	Display on

(3) Address command settings:

This instruction is used to set the address of the display register. The maximum effective address is 16 bits (COH-CFH). If the address is set to DOH or higher, the data is ignored until the effective address is set. When power on, the address is set to COH by default.

MSB							LSB	
В7	В6	B5	B4	В3	B2	B1	В0	Display address
1	1			0	0	0	0	СОН
1	1			0	0	0	1	C1H
1	1			0	0	1	0	C2H
1	1			0	0	1	1	СЗН
1	1			0	1	0	0	C4H
1	1			0	1	0	1	C5H
1	1				1	1	0	C6H
1	1		evant	0	1	1	1	C7H
1	1		items, fill in 0		0	0	0	C8H
1	1] '''	U	1	0	0	1	С9Н
1	1			1	0	1	0	CAH
1	1			1	0	1	1	СВН
1	1			1	1	0	0	ССН
1	1			1	1	0	1	CDH
1	1			1	1	1	0	CEH
1	1			1	1	1	1	CFH

TM1629B

VI. Display register address:

The register stores the data transmitted from the external device to TM1629B through the serial interface. The most effective address is fromCOH-CFH, with a total of 16 byte units, corresponding to the chip SEG and GRID pins respectively. The specific allocation is shown in figure (2)

When writing LED display data, operate from low bit to high bit of display address and from low bit to high bit of data byte.

-																₹.
	Х	x	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
	our	gher f	U(Hi bits	xxH	bits)	er four	L(Lowe	xxH	our	gher fo ts)	HU(Hi bi	xx	our	_	IL(Lo	ххŀ
	В7	В6	B5	B4	В3	B2	B1	В0	В7	В6	B5	B4	В3	B2	B1	В0
GRID1		łU	C1			HL	C1			HU	C0			HL	C0	
GRID2		ΗU	С3			HL	C3			HU	C2			HL	C2	
GRID3		-U	C5			HL	C5			HU	C4			HL	C4	
GRID4		-U	C7			'HL	C7			HU	C6			HL	C6	
GRID5		-U	C9			HL	C9			HU	C8			HL	C8	
GRID6		HU .	СВ			HL	CB			HU	CA			HL	CA	
GRID7		HU	CD			HL	CD			HU	CC			HL	CC	
GRID8		łU	CF			HL	CF			HU	CE			HL	CE	

Fig (2)

▲ Note: the value of chip display register stored in the power on moment may be random and uncertain. At this time, the customer sends the open screen command directly,

It is possible to display garbled code. Therefore, our company suggests the customer to perform a power on reset operation on the display register, that is, after power on, write all the data 0x00 to the 16 bit video memory address (00H-0FH).

VII. Display:

1. Drive common cathode nixie tube

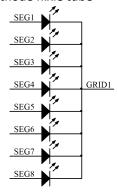
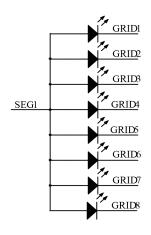


Fig. (7)

Figure 7 shows the connection diagram of the common cathode digital tube. If the nixie tube displays "0", you only need to write the data of 0x3f to the address of COH (GRID1) from the low position. At this time, the data of COH corresponding to each SEG1-SEG8 is shown in the table below.



LE	D	drive	control	special	circuit

TM1629B

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	1	1	1	1	1	1	GRID1(C0H)
B7	В6	B5	B4	В3	B2	B1	В0	

2. Digital tube driving common anode

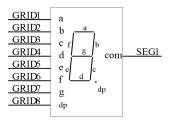


Fig. (8)

Figure 8 shows the connection diagram of common anode digital tube. If the digital tube displays "0", it is necessary to write data 01H to address units COH(GRID1),C2H(GRID2),C4H(GRID3),C6H(GRID4),C8H(GRID5),CAH(GRID6) respectively, and write data 00h to other address units CCH (grid7) and CEH (grid8). The corresponding data of each SEG1-SEG8 is shown in the table below.

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	0	0	0	0	0	1	GRID1(C0H)
0	0	0	0	0	0	0	1	GRID2(C2H)
0	0	0	0	0	0	0	1	GRID3(C4H)
0	0	0	0	0	0	0	1	GRID4(C6H)
0	0	0	0	0	0	0	1	GRID5(C8H)
0	0	0	0	0	0	0	1	GRID6(CAH)
0	0	0	0	0	0	0	0	GRID7(CCH)
0	0	0	0	0	0	0	0	GRID8(CEH)
В7	В6	B5	B4	В3	B2	B1	В0	

▲ Note: whether driving common cathode digital tube or driving common anode digital tube, SEG pin can only be connected to the anode of LED, grid can only be connected to the cathode of LED, not reversed.

©Titan Micro Electronics www.titanmec.com

V2.1

TM1629B

VIII. Key scan and key scan data register:

The maximum key scan matrix of the chip is 8 × 2bit, as shown in figure (3)

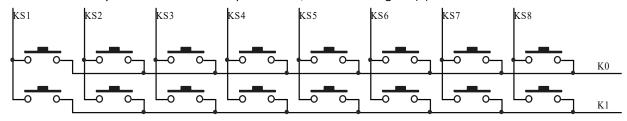


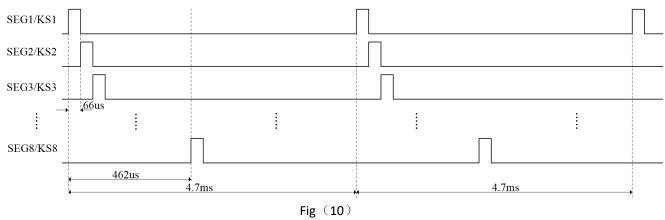
Fig. (3)

The key scan data storage address is shown in figure (4). After the command of key reading is issued first, byte 1-byte 4 of key data is read. The read data is output from the low bit. When the key corresponding to the K and KS pins of the chip is pressed, the bit bit in the corresponding byte is 1.

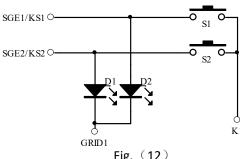
В0	B1	B2	В3	B4	B5	В6	В7		
Х	Х	K1	КО	Х	Х	K1	КО		
	KS1				KS	BYTE1			
	KS3				KS	BYTE2			
	KS5				KS	BYTE3			
	KS7				KS	BYTE4			

Fig. (4)

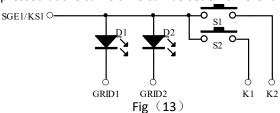
Note:


- 1. TM1629b can read 4 bytes at most, and it is not allowed to read more.
- 2. Read data bytes can only be read from byte1-byte4 in sequence, not across bytes. For example, when K2 and KS8 on the hardware are pressed, if you want to read the key data, you must read the sixth bit of the fourth byte before you can read the data.

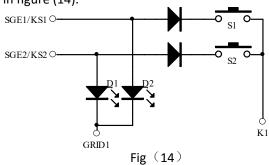
IX. Key:


(1) Key scanning: the key scanning is automatically completed by tm1629b, which is not controlled by the user. The user only needs to read the key value according to the sequence. One display cycle is needed to complete a key scan, and one display cycle needs t = 4.7ms. Two different keys are pressed successively within 4.7ms, and the key value read twice is the key value of the first key pressed.

After the TM 1629b is powered on, the waveform of SEG1/KS1-SEG8/KS8 is shown in figure (10)

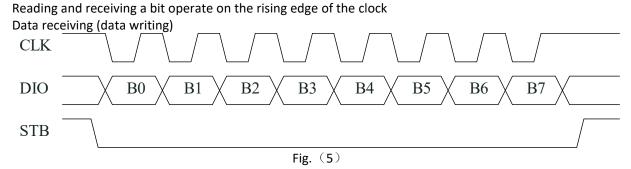

▲ Note: one cycle time is related to the oscillation frequency of IC, and the oscillation frequency of each IC is not completely consistent. The above data are for reference only, subject to the actual measurement.

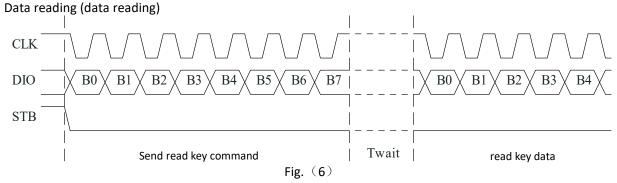
(2) Key reuse: the problem of composite key is abnormal: SEG1/KS1-SEG8/KS8 is display and key scan reuse. Taking figure (12) as an example, it shows that D1 needs to be on and D2 off, SEG1 needs to be "0" and seg2 is "1". If S1 and S2 are pressed at the same time, it is equivalent to SEG1 and SEG2 being short circuited. At this time, D1 and D2 are on.



Solution:

1. On the hardware, the keys to be pressed at the same time can be set on different K lines, as shown in figure (13),




2. The diode in series is shown in figure (14).

▲Note: it is recommended to use the same KS different K key as the composite key.

X. Serial data transmission format:

 \triangle Note: 1. When reading data, there is a waiting time between the instruction setting from the eighth rising edge of the serial clock CLK and the data reading from the falling edge of CLK (minimum 2 μ S). See the time sequence characteristic table for specific parameters.

©Titan Micro Electronics www.titanmec.com

V2.1

TM1629B

XI. Serial data transmission in application:

Address increase m	าดตะ
--------------------------------------	------

Using the mode of address auto plus 1, setting the address is actually setting the starting address of the data stream. After the start address command word is sent, "STB" does not need to be set high to transfer data immediately. At most, it is 16byte. After the data is transferred, "STB" is set high.

CLK _								
DIO _	Command1	Command2	Data1	Data2	******	Data n	Command3	
STB -								

Command1: set data command Command2: set display address

Data1-n: transfer display data to command2 address and later address (up to 16bytes)

Command3: display control command

(2) Fixed address mode

Using the fixed address mode, setting the address is actually setting the address where the 1byte data to be transmitted is stored. After the address is sent, "STB" does not need to be set high, but 1byte data is transferred immediately, and "STB" is set high after data transmission. Then reset the address where the second data needs to be stored. After the 16byte data transmission is completed, set "STB" high.

	•		•					
CLK								_
DIO :	Command1	Command2	Data1	Command3	Data2	1111111	Command4	_
STB .		П						_

Command1: set data command Command2: set display address 1

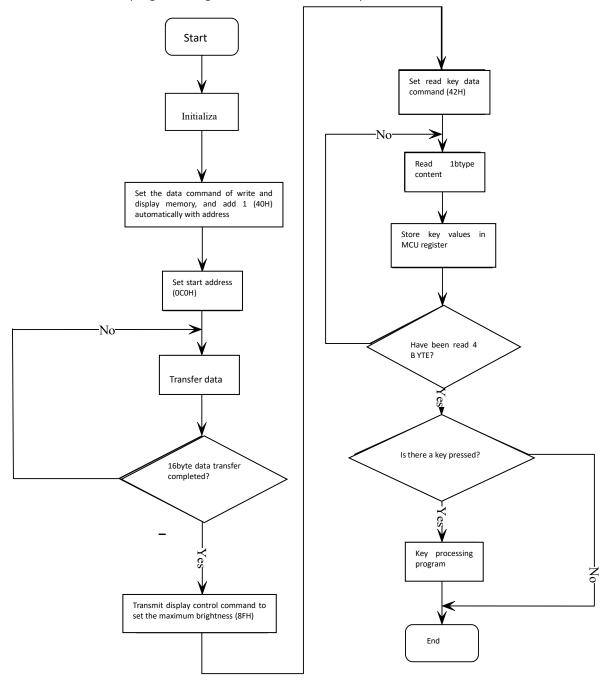
Data1: transfer display data 1 to the address of command2

Command3: set display address 2

Data2: transfer display data 2 to the address of command3

Command4: display control command

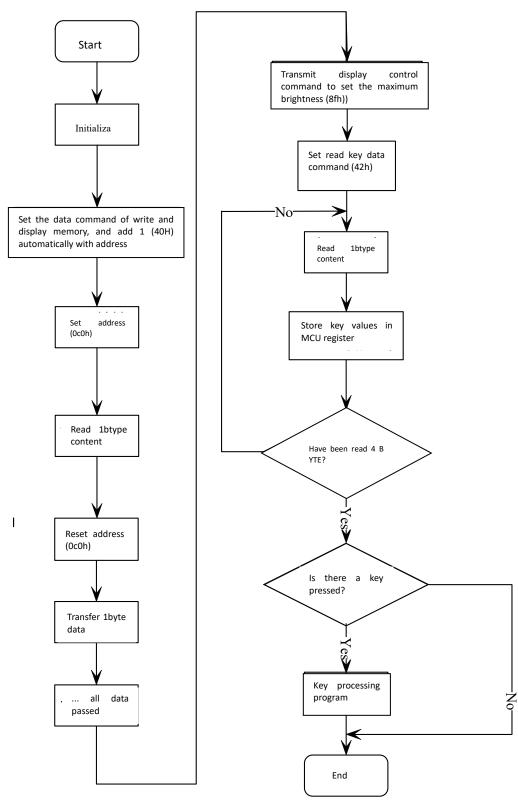
(3) Read key timing CLK Command1 Data1 Data2 Data3 Data4 STB


Command1: set read key command

Data1-4: read key data

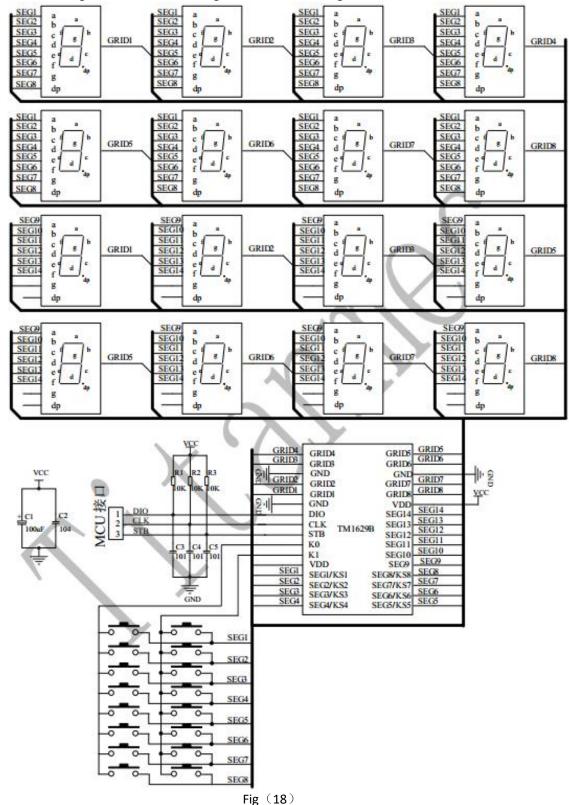
(4) The flow chart of program design with address auto plus one and fixed address mode is as follows

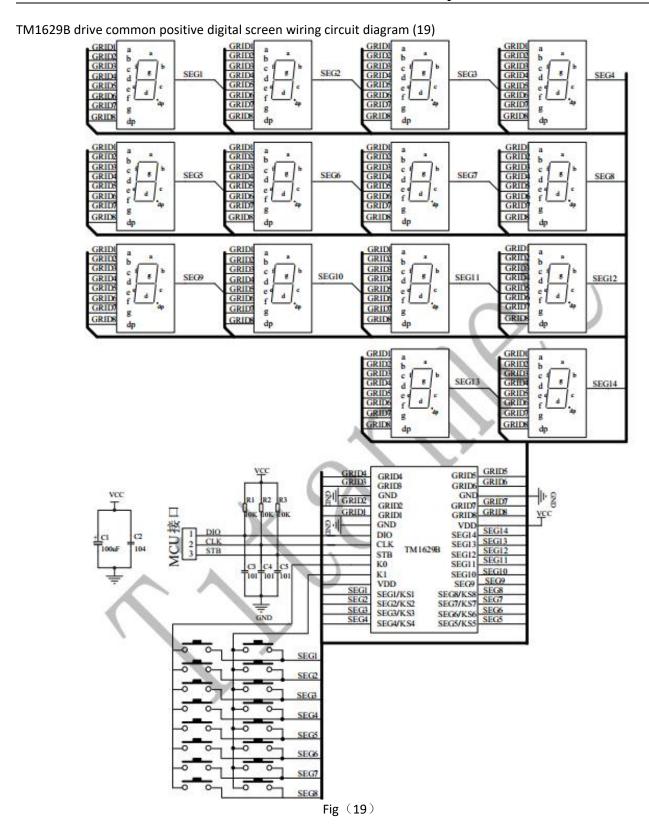
The flow chart of program design with automatic address plus one is as follows



©Titan Micro Electronics www.titanmec.com

- 11 -


Flow chart of program design with fixed address:



XII. Application circuit:

Hardware circuit diagram of tm1629b driving common cathode digital screen

©Titan Micro Electronics www.titanmec.com

V2.1

- 14 -

TM1629B

▲Note:

- 1. The filter capacitor between VDD and GND should be placed close to TM1629B chip in PCB wiring to enhance the filtering effect.
- 2. Three 101 (100pF) capacitors connected to DIO, SCLK and STB communication ports can reduce the interference to communication ports.
- 3. Because the conduction voltage of blue LED is about 3V, the power supply of TM1629B should be 5V.

XIII. Electrical parameters:

Limit parameter (TA = 25 $^{\circ}$ C, VSS = 0V)

Parameter	Symbol	Scope	Unit
Logic supply voltage	VDD	-0.5 ∼+7.0	V
Logic input voltage	VI1	-0.5 ~ VDD + 0.5	V
Led SEG drive output current	101	-50	mA
Led grid drive output current	102	+200	mA
Power loss	PD	400	mW
Working temperature	Topt	-40 ∼ +85	$^{\circ}$
Storage temperature	Tstg	-65 ∼+150	$^{\circ}\!$

Normal operating range (Vss = 0V)

Parameter	Symbol	Min	Typical	Max	Unit	Test conditions
Logic supply voltage	VDD	3	5	6	V	-
High level input voltage	VIH	0.7 VDD	-	VDD	V	-
Low level input voltage	VIL	0	-	0.3 VDD	V	-

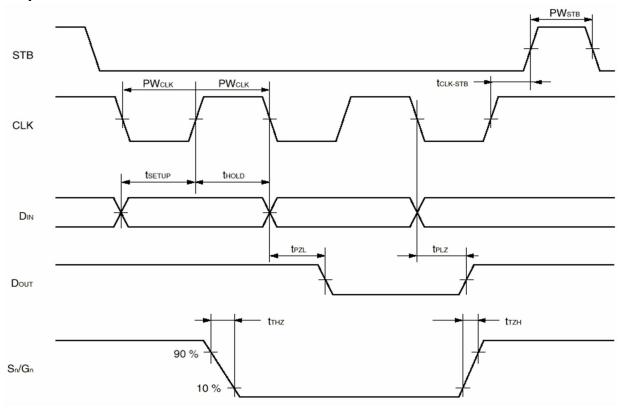
©Titan Micro Electronics www.titanmec.com

- 15 -

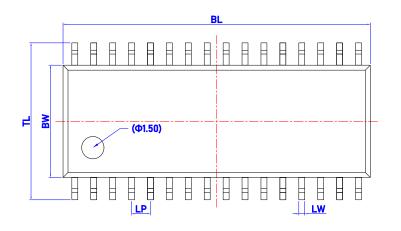
Electrical characteristics (VDD = 5 V, Vss = 0V)

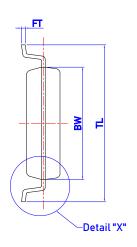
Parameter	Symbol	Min	Typical	Max	Unit	Test conditions
High level output current	Ioh	20	35	50	mA	SEG1∼SEG14, Vo = VDD – 3V
Low level input current	l _{OL1}	80	140	-	mA	GRID1∼GRID8 Vo=0.3V
High level output current tolerance High level input voltage	Itolsg	-	-	5	%	Vo = VDD − 3V, SEG1∼SEG14
Low level input voltage	VIH	0.7 VDD	-	-	V	CLK,DIO,STB
High level output current	VIL	-	-	0.3 VDD	V	CLK,DIO,STB

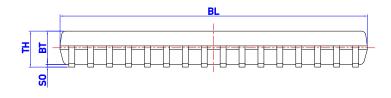
Switching characteristics (VDD = 5V)

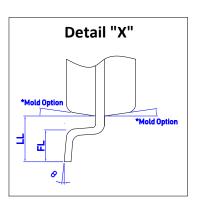

Parameter	Symbol	Min	Typical	Max	Unit	Т	est conditions
Transmission	t _{PLZ}	-	-	300	ns		CLK → DIO
delay time			-	100	ns	CL = 15pF, RL = 10KΩ	
Rise time	t _{TZH} 1	-	-	2	μs	CL = 300p F	SEG1∼SEG14
Descent time	t _{THZ}	-	-	1.5	μs	CL = 300pF,SEGn,GRIDn	
Maximum input clock frequency	Fmax	-	-	1	MHz	Duty cycle 50%	
Input capacitance	CI	-	-	15	pF		-

Temporal characteristic (VDD = 5V)


Parameter	Symbol	Min	Typical	Max	Unit	Test conditions
Clock pulse width	PW _{CLK}	500	-	-	ns	-
Gate pulse width	PW _{STB}	1	-	-	μs	-
Data establishment time	t _{SETUP}	100	-	-	ns	-
Data retention time	t _{HOLD}	100	-	-	ns	-
CLK → STB time	t _{CLK-STB}	1	-	-	μs	CLK↑→STB↑


Sequence waveform:





XIV. Package size(SOP32-300)

Di _{symbol} ns

Item	BL	BW	TL	LW	LP	FT	BT	S0	ТН	LL	FL	θ
表示	总长	胶体宽度	跨度	脚宽	脚间距	脚厚	胶体厚度	站高	胶体高度	单边长	脚长	脚角度
Unit	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	?
Spec	20.73 (20.63) 20.53	7.64 (7.54) 7.44	10.60 (10.40) 10.20	0.400 TYP	1.270 TYP	0.250 (0.200) 0.170	2.34 (2.24) 2.14	0.250 (0.175) 0.100	2.490 Max.	1.60 (1.50) 1.40	0.95 (0.75) 0.55	8 (4) 0

All specs and applications shown above subject to change without prior notice.