Views: 1528
Пришло время вернуться к светомузыке.
На сегодня использование аналогового входа стало непрактичным, на сегодня необходимо использовать S/PDIF и Toslink.
С этим надо было как то разобрать, что это такое, так как я отстал этом направлении.
S/PDIF
S/PDIF или S/P-DIF — расшифровывается как Sony/Philips Digital Interface (или Interconnect) Format (описано также как IEC 958 type II в международном стандарте IEC-60958). Является совокупностью спецификаций протокола низкого уровня и аппаратной реализации, описывающих передачу цифрового звука между различными компонентами аудиоаппаратуры[1].
На наш язык это передача данных по коаксиальному кабелю, т.е. по проводам, волновое 75 ом.
Toslink
Toslink (сокр. от Toshiba Link) — стандарт соединения с помощью оптоволокна (световодов), разработанный корпорацией Toshiba.
Часто встречается разный способ написания, например: TOSLINK, TOSlink, TosLink, и Tos-link. TOSLINK (с записью в верхнем регистре) является зарегистрированной торговой маркой Toshiba. Общее название стандарта — EIAJ optical.
TOSLINK — волоконно-оптический кабель. Сейчас большую популярность приобрели разъёмы типа MiniTOSLINK Mini toslink -это разъём оптического кабеля в форм-факторе 3,5 jack. Очень часто такие разъёмы встречаются в современных ноутбуках, где выход S/PDIF совмещён с выходом на наушники. Для соединения такого ноутбука с ресивером потребуется кабель MiniTOSLINK — TOSLINK, либо переходник для стандартного кабеля TOSLINK-TOSLINK.
Но Headphone Optical Toslink я использовать не буду, т.к. решил отказаться от аналоговой части. Все таки почему решил отказаться?
Первая проблема. Дело в том, что для качественной работы FFT надо четко понимать ноль сигнала, для этого я в старой схеме использовал, то цифровой потенциометр для подстройки нуля, то потом многооборотистый потенциометр. Все это заставляло выполнять перед включением или в стадии наладки настройку нуля, точность должна быть очень большой даже малейшее отклонение начинало вносить в Фурье заметные искажения. Ну и была проблема времени, старение элементов и уход нуля сигнала.
Вторая проблема. Это, что что в аналоговой части возможно возникновение КЛИППИНГА. Даже если происходит симметричное и “красивое” ограничение, оно возникает когда уровень сигнала может быть выше ожидаемого, Фурье взрывается кучей фантомных частот, что просто смазывает картинку светосинтезатора. Борьба методом написанием разного рода АРУ сильно большого эффекта не дает.
Вот по этому идея отказаться от аналоговой части и перейди на цифровой интерфейс имеет место и видеться более перспективной.
Изучение я начал с возможности приобретения и стоимость преобразователей. Для микроконтроллера, мне нужны данные в формате I2S. Ищем Digital Audio Interface Receiver, что имеем:
| Receiver | Входы | Выходы | Тип | Корпус | Управление | Цена ($) | Цена Китай ($) |
|---|---|---|---|---|---|---|---|
| CS8416 | 8 | Receiver | MCU/PIN | 8-9 | 1-2 | ||
| WM8804 | 1 | 1 | Transceiver | MCU/PIN | 1-2 | ||
| WM8805 | 8 | 1 | Transceiver | MCU | |||
| DIR9001 | 1 | Receiver | PIN | 4-5 | |||
| AK4117VF | 2 | Receiver | 24VSOP | MCU | 3-4 | 1 | |
| AK4113VF | 6/2 | Receiver | 30VSOP | MCU/PIN | 5 | 1-2 | |
| AK4118AEQ | 8 | 2 | Transceiver | 48LQFP | MCU/PIN | 4 | 1 |
Мой выбор остановился на AK4113VF.
Теперь надо разобраться с назначением выводов, что куда и зачем едят.
Для начала мы можем навастривать работу преобразователя через последовательные интерфейс. Он дает возможность управлять чрез SPI (4 проводный) и I2C. Я решил это возможность не использовать по двум причинам, мне надо только два входа, я предполагаю оптический и коаксиальный и мне необходимо только выход I2S для микроконтроллера.
Для работы с управлением без микроконтроллера необходимо на вывод P/SN подать высокий уровень. Я использую питание 3,3 вольта. поэтому подключаю напрямую к шине +3,3V (к питанию цифровой части) При этом внутрений коммутатор переключает выводы преобразователя.
Тактовый генератор я буду использовать с кварцем 24,576 MHz, для этого смотрим таблицу 1 (описания) выбираем режим 0. Для этого выводы CM0/CDTO/CAD1 (30) и CM1/CDTI/SDA (29) подключаем к земле.
Выход тактовой частоты для ЦАП (выходы MCKO1 и MCKO2), нам нет необходимости использовать, поэтому для удобства схемотехники выводы управления OCKS1/CCLK/SCL (28) и OCKS0/CSN/CAD0 (27) мы их также подключим к земле. Выходы MCKO1 (26) и MCKO2 (25) оставим не подключенными.
В режиме параллельного управления мы можем использовать только 2 входа (вместо 6) это входы RX1 (11) и RX5 (15) для выбора с какого входа обрабатывать сигнал надо использовать выход IPS/RX6 вывод 16. Этот вход подключим к микроконтроллеру будем входами управлять через дистанционное управление.
Спойлер. Дистанционное, будет два варианта, через смартфон (WI-FI) и IR.
И остается настройка данных которые будут формировать преобразователь нам нужен I2S, для это необходимо настроить входы RX2/DIF0, RX3/DIF1, RX4/DIF2. Смотрим таблицу 16 в описании нам нужен формат 24-bit, I2S. Это режим 5 для этого подключаем RX2/DIF0 (12) и RX4/DIF2 (14) к +3,3V, а RX3/DIF1 (13) к земле.
Кварцевый резонатор подключаем к выводам XTI (5) и XTO (6) конденсаторы выбираем из рекомендаций на резонатор.
Спойлер. вообще то можно использовать без резонатора, для этого вывод XTI надо подключить к земле и настроить на работу без резонатора выводы CM0/CDTO/CAD1 и CM1/CDTI/SDA надо подключить к земле.
Для красоты к некоторым выводам подключим светики (LED), это даст возможность видеть как работает преобразователь при наличии входного сигнала (ну и будет на плате, чёто блымать, ну говорю для красоты):
V/TX (4)- флаг достоверности входных данных.
INT0 (20) – флаг 96 kHz
FS96/I2C (19) – флаг UNLOCK/PARITY
INT1 (17) – флаг AUTO/AUDION
Полное назначение можно прочитать в описании в разделе обработка ошибок описания.
Вход цифровых данных DAUX (24) не используем подключаем к земле. Вход R (8) согласно описания через резистор 15 kOhm подключаем к аналоговой земле.
С выводами питания (опишу после в самой светомузыке) тут проще, питание аналоговой части, питание цифровой части и питание выходного цифрового буфера (преобразователь уровня) у меня одноуровневое питание, все к +3,3V через фильтры, правда аналоговую часть запитываем через отдельный LDO.
И в окончании выводы которые мы используем для подключения к микроконтроллеру:
SDTO (22) 24-bit, I2S – данные цифровые звука I2S интерфейса
LRCK (21) L/H – индикатор канала I2S интерфейса
BICK (23) 64fs – синхросигнал I2S интерфейса
PDN (7) – сброс преобразователя (включение выключение)
IPS/RX6 (16) – выбор входа цифрового аудио.
Вроде ничего не забыл.
Схема подключения преобразователя AK4113VF:
Внимание: Схема предварительная 100%, что в оригинале будут изменения!
Digital Audio Interfaces
Это только начало….
Это может быть интересно
Arduino LCD + STONE STVI056WT-01 + Strain gaugeViews: 697 Author li grey email: greyli1987@outlook.com The strain assessment instrument is used to assess the degree of corresponding muscle strain by obtaining the muscle surface action potential through silver …
Мониторинг температурыViews: 1489 Настоящий проект создан как обучающий с применением библиотек ds18b20 и LCDHD44780 и компилятора Microchip MPLAB XC8 C Compiler V1.12. Если необходимо иметь информацию по состоянию температуры в помещении или в здании, с количеством до 6 точек (16), то …
Просто о внешних переменныхViews: 951 Часто возникает задача когда необходимо предавать данные между модулями программы. Например, передать данные между файлами, или управлять работой модулей. Для этого создаем заголовочный файл и описываем наши переменные как …
Pogo Pin Connector LibViews: 39 У своїх проектах почав застосовувати з’єднувачі та контакти типу Pogo Pin. Для цього до своєї існуючої БД додав нову бібліотеку. Огляд від ІІ Pogo Pin (погопін) – це …
Проект с использованием MCC часть 02Views: 2466 Когда мы запустили конфигуратор, самое главное понять, что с этим делать и как проверить, то что мы делаем работает или нет. Для начала настроим регистры конфигурации микроконтроллера и настроем …
Универсальный терморегулятор ch-c3000Views: 3236 Терморегулятор ch-c3000 предназначен для управления системами регулирования температуры в пределах от – (минус) 55 до + 125 С. Регулятор может использоваться как в системах отопления, так и в …
Проект с использованием MCC часть 11Views: 1034 Можно несколько облагородить программу вынести наши процедуры обработки нажатия кнопок в отдельные функции. Но вы должны понимать, что это хоть и не значительно, но будет тормозить общую скорость …
Moving average – скользящее среднееViews: 2469 Скользящая средняя, скользящее среднее (англ. moving average, MA) — общее название для семейства функций, значения которых в каждой точке определения равны среднему значению исходной функции за предыдущий период. Скользящие средние обычно используются с данными временных рядов для сглаживания …
MPLAB® Code ConfiguratorViews: 1825 MPLAB ® Code конфигуратор (MCC) является свободно распространяемым плагином, это графическая среда программирования, которая генерирует бесшовный, легкий для понимания кода на Cи, чтобы вставить его в свой проект.
Часы-кухонный таймерViews: 2918 Каждая кухня должна иметь кухонный таймер, который позволяет напоминать хозяйке когда проходить определенный промежуток времени. Например, печем пирог, варим яйца… , чтобы не смотреть постоянно на часы, установим таймер и …



