BMP280 – температура и атмосферное давление – учебный проект

Views: 2058


Учебный проект на PIC32 и светодиодной панели P5 (2121)-168-6432-80 (32*64).

Проект позволяет ознакомиться с простой графикой и с чтением давления и температуры с датчика BMP280.

Для тестирования необходимо собрать следующую схему.

Схему в формате pdf можно скачать внизу страницы.

Для тестирования используется модуль приобрести его можно как всегда у китайцев.

Датчик позволяет измерять окружающую температуру и атмосферное давление.

Для разработки будем использовать библиотеку графики от Catcatcat и библиотеку от BOSCH для датчика BMP280. Библиотеку для графики можно скачать внизу статьи, а библиотеку для датчика вот отсюда /BMP280_driver.

 

Выберем Harmony проект

Зададим папку проекта и имя проекта.

Настроим на наш микроконтроллер и установим кодовую страницу проекта, от которой страницы будут зависит формируемые коды символов.

Кодовая страница.

Настроим выбор микроконтроллера, версию компилятора, тип дебаггера

Для работы библиотеки графики для светодиодного модуля необходимо настроить порты микроконтроллера и включить таймер для формирования периода для формирования развертки на дисплее.

Перейдем в закладки опции и настроим работу таймера. Сначала зайдем в System Services и активируем системный таймер.

Откроем раздел Драйверы и настроем для управления разверткой дисплея таймер 2. Режим статический, таймер 2, предделитель на 64, период 500.

 

Запустим генерацию проекта

Будут с регенерированы основные файлы проекта.

Следующий этап добавим библиотеку графики для светодиодного модуля. Добавления выполним классическим образом. Нам необходимо взять папку DRIVER_HUB75 содержащую драйвер для формирования изображения на светодиодных модулях, и папку GRAPHICS_HUB75 с функциями графики и добавим в наш проект.

Я это делаю так, в папке проекта, создаю папку с именем ch_lib, вней я храню все свои библиотеки.

В неё добавим наши библиотеки.

Теперь подключим библиотеки к нашему проекту. Сначала добавим рабочие файлы.

Добавим каталог с нашей библиотекой.

В структуре проекта появиться каталог с библиотеками.

Теперь аналогичным образом добавит заголовки библиотек.

После добавления папки заголовков будут пустые, необходимо дополнительно добавить заголовки каждый в свой каталог.

Файл заголовок драйвера.

Файл заголовка графической библиотеки.

Теперь необходимо добавить драйвер в прерывания таймера, откроем файл прерываний.

 

Добавим в прерывания таймера 2 следующие строки.

void __ISR(_TIMER_2_VECTOR, ipl1AUTO) IntHandlerDrvTmrInstance0(void)
{
    Drive_hab75();                  // видео драйвер
    
    if(timer_tact1>0)timer_tact1--; // таймер скорости бегущей реки
    if(timer_tact2>0)timer_tact2--; //
    
    PLIB_INT_SourceFlagClear(INT_ID_0,INT_SOURCE_TIMER_2);
}

Для подключения достаточно добавить заголовок библиотеки графики, описание на драйвер в ней уже есть.

//------------------------------------------------------------------------------
#include "../ch_lib/GRAPHICS_HUB75/graphics.h"  // библиотека графики
//------------------------------------------------------------------------------

Теперь можно протестировать вывод изображения на дисплей. Для этого откроем файл app.c.

Добавим заголовок библиотеки графики.

//------------------------------------------------------------------------------
#include "../ch_lib/GRAPHICS_HUB75/graphics.h"
//------------------------------------------------------------------------------

И в Функцию void APP_Tasks ( void ) в case APP_STATE_SERVICE_TASKS: бегущую строку с надписью, что даст нам возможность опробовать работу функций вывода изображения на дисплей.

        case APP_STATE_SERVICE_TASKS:
        {
        
            Scrolling2("Температура и давление, от Catcatcat electronics!", 5, 1, 53, 2, 1, 1, 100, Fuchsia, Black);
            
            break;
        }

Загрузим проект и проверим работу графики.

Дополнительно добавим прорисовку прямоугольников, для красоты со случным выводом цвета. Для этого подключим библиотеку stdlib.h  для функции rand. И добавим  строки.

            if(++f>3000000)
            {
                f=0;
                
                Rectangle( 0,  0,  1,  1,   5,  20,  8,  8, rand()%7, rand()%7);
                Rectangle( 0,  0,  1,  1,  15,  20,  8,  8, rand()%7, rand()%7);
                Rectangle( 0,  0,  1,  1,  25,  20,  8,  8, rand()%7, rand()%7);
                Rectangle( 0,  0,  1,  1,  35,  20,  8,  8, rand()%7, rand()%7);
            }

У вас должно быть изображение:

Вверху каждые две секунды 4 квадрата с изменяющимся цветом, внизу бегущая строка.

Для работы с датчиком BMP280 нам необходимо активировать I2C модуль. Для этого перейдем в конфигуратор и настроим порты для пятого модуля I2C.

Активируем модуль. Статический режим, модель передача буфера данных, модуль 5 скорость 100 кб.

Выполним генерацию проекта.

Подключим библиотеку от Bosch для датчика BMP280.

Для этого скачаем файлы как это описано в начале статьи и добавим библиотеку в проект для этого скопируем каталог BMP280, в папку Bosch нашего проекта.

Добавим библиотеку в проект, ка это делалось ранее.

Библиотека требует промежуточных файлов для связи с модулем I2C. Для этого надо создать три функции.

Функция задержки:

void delay_ms(uint32_t period_ms)
{
    /* Реализуйте процедуру задержки в соответствии с целевой машиной */
    time_delayi = 3*period_ms;        // функция задержки 1 ms
    while (time_delayi);    //
}

Нужна функция записи.

int8_t i2c_reg_write(uint8_t i2c_addr, uint8_t reg_addr, uint8_t *reg_data, uint16_t length)
{
    bufer.adress = reg_addr;
    memcpy(bufer.bufer,reg_data,length);
    DRV_I2C0_Transmit (i2c_addr<<1, &bufer, length+1, 0);
    delay_ms(2);
    return 0;
}

Для функции записи опишем структуру.

typedef struct 
{
    uint8_t adress;             // адрес старший байт
    uint8_t bufer[100];         // буфер данных для передачи
}_bufer;                        //

И функцию чтения.

int8_t i2c_reg_read(uint8_t i2c_addr, uint8_t reg_addr, uint8_t *reg_data, uint16_t length)
{
static uint8_t  reg_addrr;
    reg_addrr = reg_addr;
    DRV_I2C0_TransmitThenReceive(i2c_addr<<1,&reg_addrr,1,reg_data,length,0);
    delay_ms(2);
    return 0;
}

Создадим промежуточную библиотеку, назовем её например bmp280_in. Добавим файлы в проект.

В итоге мы должны получить следующую структуру проекта.

Для запуска работы датчика необходимо в начале выполнить процедуру инициализации, после чего можно считывать данные температуры и давления. Датчик может преобразовывать отдельно температуру и давление или выполнять обо преобразования одновременно, в зависимости от как эффективно и точно необходимо получать данные, могут быть заданы разнообразные режимы работы.

В конце стать есть частичный передо описания датчика, в котором можно более подробно получить описание датчика и его возможности.

Подключим наши библиотеки в файле app.c

#include "../Bosch/BMP280/bmp280.h"         // Библиотека Bosch для датчика bmp280
#include "../ch_lib/BMP280_IN/bmp280_in.h"  // Связывающие драйвера

Добавим промежуточные переменный и структуры для обработки данных.

struct bmp280_dev bmp;
struct bmp280_config conf;
struct bmp280_uncomp_data ucomp_data;
uint32_t tempI, presI;

А также последовательность инициализации и индикации температуры и давления.

                if(!flag)
                {
                    /* Сопоставьте указатель функции задержки с функцией, ответственной за реализацию задержки */
                    bmp.delay_ms = delay_ms;
                    /* Присвойте устройству адрес I2C в зависимости от состояния SDO pin (GND for PRIMARY(0x76) & VDD for SECONDARY(0x77)) */
                    bmp.dev_id = BMP280_I2C_ADDR_PRIM;
                    /* Выберите режим интерфейса как I2C */
                    bmp.intf = BMP280_I2C_INTF;
                    /* Сопоставьте указатель функции чтения и записи I2C с функциями, отвечающими за передачу шины I2C */
                    bmp.read = i2c_reg_read;
                    bmp.write = i2c_reg_write;
                    /*инициализация модуля*/
                    bmp280_init(&bmp);
                    /* Обязательное чтение текущих настройк перед записью, особенно когда все настройки не изменены */
                    bmp280_get_config(&conf, &bmp);
                    /* настройка передискретизации температуры, коэффициента фильтра и скорости передачи данных на выходе */
                    /* Коэффициент фильтра*/
                    conf.filter = BMP280_FILTER_COEFF_2;
                    /* Передискретизация давления установлена на 4x */
                    conf.os_pres = BMP280_OS_4X;
                    /* Передискретизация температуры установлена на 4x */
                    conf.os_temp = BMP280_OS_4X;
                    /* Отключение измерения теперературы или давления */
            //        conf.os_pres = BMP280_OS_NONE;
            //        conf.os_temp = BMP280_OS_NONE;
                    /* Установка скорости передачи данных на выходе 1HZ(1000ms) */
                    conf.odr = BMP280_ODR_1000_MS;
                    /* Конфигурирование модуля */
                    bmp280_set_config(&conf, &bmp);

                    /* Всегда устанавливайте режим питания после настройки конфигурации */
                    bmp280_set_power_mode(BMP280_NORMAL_MODE, &bmp);

                    flag=1;
                }
    
                /* Чтение необработанных данных с датчика */
                bmp280_get_uncomp_data(&ucomp_data, &bmp);

                /* Получение компенсированного давления с использованием 32-битной точности */
                presI = bmp280_comp_pres_32bit(ucomp_data.uncomp_press, &bmp);
                presI = presI*0.00750063755419211;//1 паскаль [Па] = 0,00750063755419211 миллиметр ртутного столба (0°C) [мм рт.ст.]

                /* Получение 32-битной скомпенсированной температуры */
                tempI = bmp280_comp_temp_32bit(ucomp_data.uncomp_temp, &bmp);
                tempI = tempI/10;
                /*Индикация параметров*/
                Cursor (1, 10);
                BinDec(tempI, 2, 0, 3, 1, 1, White, Black);
                Symbol(0xBF, 1, 0, 1, 1, Red, Black);
//                Symbol('C', 1, 0, 1, 1, White, Black);
                Cursor (34, 10);
                BinDec(presI, 0, 0, 3, 1, 1, Green, Black);
                StringCur("mm", 1, 0, 1, 1, Yellow, Black);
//              bmp.delay_ms(1000); /* Время сна между измерениями = BMP280_ODR_1000_MS */
//              delay_ms(2000);
            }

Дополнительно необходимо подключить в прерывания таймера 2 управление задержкой для функции delay_ms(uint32_t period_ms).

void __ISR(_TIMER_2_VECTOR, ipl1AUTO) IntHandlerDrvTmrInstance0(void)
{
    Drive_hab75();                  // видео драйвер
    
    if(timer_tact1>0)timer_tact1--; // таймер скорости бегущей реки
    if(timer_tact2>0)timer_tact2--; //
    
    if(time_delayi>0) time_delayi--;// фунция задержки для bmp280
    
    PLIB_INT_SourceFlagClear(INT_ID_0,INT_SOURCE_TIMER_2);
}

С компилируем проект и загрузим в микроконтроллер.


В результате получим следующий результат бегущая строка и индикация температуры и атмосферного давления.


Значок

BMP280 - учебный проект - схема 390.60 KB 592 downloads

Схема проекта в pdf. ...

Пароль на архив Catcatcat.

Значок

BMP280 - учебный проект - проект 465.53 KB 3 downloads

Проект MPLABX, библиотека графики, драйвер для светодиодной...
Login Required Message:

Это может быть интересно


  • Гаджеты для домашней автоматики – Датчик приближенияГаджеты для домашней автоматики – Датчик приближения
    Views: 1981 Управление светодиодным освещением – Датчик приближения. Данный гаджет предназначен для управления внутренним освещением мебели. Датчик позволяет определить закрытие или открытие дверцы или ящика и при этом включать или …
  • MCC PIC24 – модуль OUTPUT COMPARE – режиме ШИМMCC PIC24 – модуль OUTPUT COMPARE – режиме ШИМ
    Views: 1125 Во многих системах управления, для формирования управляющих сигналов требуется модуль ШИМ, он позволяет не только формировать импульсы заданной длительности, но и с применением обычного RC фильтра строить простые …
  • Гаджеты для домашней автоматики – Датчик движенияГаджеты для домашней автоматики – Датчик движения
    Views: 1452 Управление светодиодным освещением – Датчик движения. Данный гаджет предназначен для управления освещением рабочих столов (кухонных столов), освещение прихожих, освещение зеркал в прихожих, автоматическое включение света в коридорах. Датчик позволяет …
  • MAX7219/21 и 8х8 LED дисплеиMAX7219/21 и 8х8 LED дисплеи
    Views: 930 MAX7219, MAX7221 предназначены для вывода информации на 8 разрядов семисегментного индикатора, но на нем легко организовать вывод на светодиодные индикаторы 8х8. продолжение следует…. Это может быть интересно
  • Kitchen timer with contactless gesture controlKitchen timer with contactless gesture control
    Views: 639    Кухонний таймер з безконтактним керуванням жестами дозволяє встановити необхідний період часу для приготування страв, не торкаючись пристрою. Дуже зручно під час приготування їжі, коли руки забрудниться. Усі …
  • Часы-кухонный таймерЧасы-кухонный таймер
    Views: 4020 Каждая кухня должна иметь кухонный таймер, который позволяет напоминать хозяйке когда проходить определенный промежуток времени. Например, печем пирог, варим яйца… , чтобы не смотреть постоянно на часы, установим таймер и …
  • Гаджеты для домашней автоматики – Емкостной сенсорГаджеты для домашней автоматики – Емкостной сенсор
    Views: 1606 Управление светодиодным освещением – Сенсор емкостной. Данный гаджет предназначен для управления освещением где необходимо включением освещение сенсорным прикосновением. Датчик позволяет управлять светодиодной нагрузкой в виде модулей или светодиодных лент …
  • MPLAB® Harmony – или как это просто! Часть 1.MPLAB® Harmony – или как это просто! Часть 1.
    Views: 3584 Часть первая – Установка Гармонии. Музыкальная тема к статье, слушаем: В начале запуска нового проекта и выбора микроконтроллера стоит задача правильно его сконфигурировать, прежде чем перейти к реализации …
  • The art of DJThe art of DJ
    Views: 108 The art of DJ. The art of DJ has gained wide popularity. Today, a DJ is not just someone whose task is to mix tracks; a DJ is …
  • Проект с использованием MCC часть 03Проект с использованием MCC часть 03
    Views: 1589 Первым делом перенастроим регистры конфигурации, следующим образом: Отключим выход генератора (CLKOUT function is disabled. I/O function on the CLKOUT pin) Включим сторожевой таймер (WDT enabled) После этой настройки …



 

Поделись этим!

Catcatcat

catcatcat

Development of embedded systems based on Microchip microcontrollers.

Продолжайте читать

НазадДалее

Комментарии

Добавить комментарий

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.