BMP280 – температура и атмосферное давление – учебный проект

Views: 2055


Учебный проект на PIC32 и светодиодной панели P5 (2121)-168-6432-80 (32*64).

Проект позволяет ознакомиться с простой графикой и с чтением давления и температуры с датчика BMP280.

Для тестирования необходимо собрать следующую схему.

Схему в формате pdf можно скачать внизу страницы.

Для тестирования используется модуль приобрести его можно как всегда у китайцев.

Датчик позволяет измерять окружающую температуру и атмосферное давление.

Для разработки будем использовать библиотеку графики от Catcatcat и библиотеку от BOSCH для датчика BMP280. Библиотеку для графики можно скачать внизу статьи, а библиотеку для датчика вот отсюда /BMP280_driver.

 

Выберем Harmony проект

Зададим папку проекта и имя проекта.

Настроим на наш микроконтроллер и установим кодовую страницу проекта, от которой страницы будут зависит формируемые коды символов.

Кодовая страница.

Настроим выбор микроконтроллера, версию компилятора, тип дебаггера

Для работы библиотеки графики для светодиодного модуля необходимо настроить порты микроконтроллера и включить таймер для формирования периода для формирования развертки на дисплее.

Перейдем в закладки опции и настроим работу таймера. Сначала зайдем в System Services и активируем системный таймер.

Откроем раздел Драйверы и настроем для управления разверткой дисплея таймер 2. Режим статический, таймер 2, предделитель на 64, период 500.

 

Запустим генерацию проекта

Будут с регенерированы основные файлы проекта.

Следующий этап добавим библиотеку графики для светодиодного модуля. Добавления выполним классическим образом. Нам необходимо взять папку DRIVER_HUB75 содержащую драйвер для формирования изображения на светодиодных модулях, и папку GRAPHICS_HUB75 с функциями графики и добавим в наш проект.

Я это делаю так, в папке проекта, создаю папку с именем ch_lib, вней я храню все свои библиотеки.

В неё добавим наши библиотеки.

Теперь подключим библиотеки к нашему проекту. Сначала добавим рабочие файлы.

Добавим каталог с нашей библиотекой.

В структуре проекта появиться каталог с библиотеками.

Теперь аналогичным образом добавит заголовки библиотек.

После добавления папки заголовков будут пустые, необходимо дополнительно добавить заголовки каждый в свой каталог.

Файл заголовок драйвера.

Файл заголовка графической библиотеки.

Теперь необходимо добавить драйвер в прерывания таймера, откроем файл прерываний.

 

Добавим в прерывания таймера 2 следующие строки.

void __ISR(_TIMER_2_VECTOR, ipl1AUTO) IntHandlerDrvTmrInstance0(void)
{
    Drive_hab75();                  // видео драйвер
    
    if(timer_tact1>0)timer_tact1--; // таймер скорости бегущей реки
    if(timer_tact2>0)timer_tact2--; //
    
    PLIB_INT_SourceFlagClear(INT_ID_0,INT_SOURCE_TIMER_2);
}

Для подключения достаточно добавить заголовок библиотеки графики, описание на драйвер в ней уже есть.

//------------------------------------------------------------------------------
#include "../ch_lib/GRAPHICS_HUB75/graphics.h"  // библиотека графики
//------------------------------------------------------------------------------

Теперь можно протестировать вывод изображения на дисплей. Для этого откроем файл app.c.

Добавим заголовок библиотеки графики.

//------------------------------------------------------------------------------
#include "../ch_lib/GRAPHICS_HUB75/graphics.h"
//------------------------------------------------------------------------------

И в Функцию void APP_Tasks ( void ) в case APP_STATE_SERVICE_TASKS: бегущую строку с надписью, что даст нам возможность опробовать работу функций вывода изображения на дисплей.

        case APP_STATE_SERVICE_TASKS:
        {
        
            Scrolling2("Температура и давление, от Catcatcat electronics!", 5, 1, 53, 2, 1, 1, 100, Fuchsia, Black);
            
            break;
        }

Загрузим проект и проверим работу графики.

Дополнительно добавим прорисовку прямоугольников, для красоты со случным выводом цвета. Для этого подключим библиотеку stdlib.h  для функции rand. И добавим  строки.

            if(++f>3000000)
            {
                f=0;
                
                Rectangle( 0,  0,  1,  1,   5,  20,  8,  8, rand()%7, rand()%7);
                Rectangle( 0,  0,  1,  1,  15,  20,  8,  8, rand()%7, rand()%7);
                Rectangle( 0,  0,  1,  1,  25,  20,  8,  8, rand()%7, rand()%7);
                Rectangle( 0,  0,  1,  1,  35,  20,  8,  8, rand()%7, rand()%7);
            }

У вас должно быть изображение:

Вверху каждые две секунды 4 квадрата с изменяющимся цветом, внизу бегущая строка.

Для работы с датчиком BMP280 нам необходимо активировать I2C модуль. Для этого перейдем в конфигуратор и настроим порты для пятого модуля I2C.

Активируем модуль. Статический режим, модель передача буфера данных, модуль 5 скорость 100 кб.

Выполним генерацию проекта.

Подключим библиотеку от Bosch для датчика BMP280.

Для этого скачаем файлы как это описано в начале статьи и добавим библиотеку в проект для этого скопируем каталог BMP280, в папку Bosch нашего проекта.

Добавим библиотеку в проект, ка это делалось ранее.

Библиотека требует промежуточных файлов для связи с модулем I2C. Для этого надо создать три функции.

Функция задержки:

void delay_ms(uint32_t period_ms)
{
    /* Реализуйте процедуру задержки в соответствии с целевой машиной */
    time_delayi = 3*period_ms;        // функция задержки 1 ms
    while (time_delayi);    //
}

Нужна функция записи.

int8_t i2c_reg_write(uint8_t i2c_addr, uint8_t reg_addr, uint8_t *reg_data, uint16_t length)
{
    bufer.adress = reg_addr;
    memcpy(bufer.bufer,reg_data,length);
    DRV_I2C0_Transmit (i2c_addr<<1, &bufer, length+1, 0);
    delay_ms(2);
    return 0;
}

Для функции записи опишем структуру.

typedef struct 
{
    uint8_t adress;             // адрес старший байт
    uint8_t bufer[100];         // буфер данных для передачи
}_bufer;                        //

И функцию чтения.

int8_t i2c_reg_read(uint8_t i2c_addr, uint8_t reg_addr, uint8_t *reg_data, uint16_t length)
{
static uint8_t  reg_addrr;
    reg_addrr = reg_addr;
    DRV_I2C0_TransmitThenReceive(i2c_addr<<1,&reg_addrr,1,reg_data,length,0);
    delay_ms(2);
    return 0;
}

Создадим промежуточную библиотеку, назовем её например bmp280_in. Добавим файлы в проект.

В итоге мы должны получить следующую структуру проекта.

Для запуска работы датчика необходимо в начале выполнить процедуру инициализации, после чего можно считывать данные температуры и давления. Датчик может преобразовывать отдельно температуру и давление или выполнять обо преобразования одновременно, в зависимости от как эффективно и точно необходимо получать данные, могут быть заданы разнообразные режимы работы.

В конце стать есть частичный передо описания датчика, в котором можно более подробно получить описание датчика и его возможности.

Подключим наши библиотеки в файле app.c

#include "../Bosch/BMP280/bmp280.h"         // Библиотека Bosch для датчика bmp280
#include "../ch_lib/BMP280_IN/bmp280_in.h"  // Связывающие драйвера

Добавим промежуточные переменный и структуры для обработки данных.

struct bmp280_dev bmp;
struct bmp280_config conf;
struct bmp280_uncomp_data ucomp_data;
uint32_t tempI, presI;

А также последовательность инициализации и индикации температуры и давления.

                if(!flag)
                {
                    /* Сопоставьте указатель функции задержки с функцией, ответственной за реализацию задержки */
                    bmp.delay_ms = delay_ms;
                    /* Присвойте устройству адрес I2C в зависимости от состояния SDO pin (GND for PRIMARY(0x76) & VDD for SECONDARY(0x77)) */
                    bmp.dev_id = BMP280_I2C_ADDR_PRIM;
                    /* Выберите режим интерфейса как I2C */
                    bmp.intf = BMP280_I2C_INTF;
                    /* Сопоставьте указатель функции чтения и записи I2C с функциями, отвечающими за передачу шины I2C */
                    bmp.read = i2c_reg_read;
                    bmp.write = i2c_reg_write;
                    /*инициализация модуля*/
                    bmp280_init(&bmp);
                    /* Обязательное чтение текущих настройк перед записью, особенно когда все настройки не изменены */
                    bmp280_get_config(&conf, &bmp);
                    /* настройка передискретизации температуры, коэффициента фильтра и скорости передачи данных на выходе */
                    /* Коэффициент фильтра*/
                    conf.filter = BMP280_FILTER_COEFF_2;
                    /* Передискретизация давления установлена на 4x */
                    conf.os_pres = BMP280_OS_4X;
                    /* Передискретизация температуры установлена на 4x */
                    conf.os_temp = BMP280_OS_4X;
                    /* Отключение измерения теперературы или давления */
            //        conf.os_pres = BMP280_OS_NONE;
            //        conf.os_temp = BMP280_OS_NONE;
                    /* Установка скорости передачи данных на выходе 1HZ(1000ms) */
                    conf.odr = BMP280_ODR_1000_MS;
                    /* Конфигурирование модуля */
                    bmp280_set_config(&conf, &bmp);

                    /* Всегда устанавливайте режим питания после настройки конфигурации */
                    bmp280_set_power_mode(BMP280_NORMAL_MODE, &bmp);

                    flag=1;
                }
    
                /* Чтение необработанных данных с датчика */
                bmp280_get_uncomp_data(&ucomp_data, &bmp);

                /* Получение компенсированного давления с использованием 32-битной точности */
                presI = bmp280_comp_pres_32bit(ucomp_data.uncomp_press, &bmp);
                presI = presI*0.00750063755419211;//1 паскаль [Па] = 0,00750063755419211 миллиметр ртутного столба (0°C) [мм рт.ст.]

                /* Получение 32-битной скомпенсированной температуры */
                tempI = bmp280_comp_temp_32bit(ucomp_data.uncomp_temp, &bmp);
                tempI = tempI/10;
                /*Индикация параметров*/
                Cursor (1, 10);
                BinDec(tempI, 2, 0, 3, 1, 1, White, Black);
                Symbol(0xBF, 1, 0, 1, 1, Red, Black);
//                Symbol('C', 1, 0, 1, 1, White, Black);
                Cursor (34, 10);
                BinDec(presI, 0, 0, 3, 1, 1, Green, Black);
                StringCur("mm", 1, 0, 1, 1, Yellow, Black);
//              bmp.delay_ms(1000); /* Время сна между измерениями = BMP280_ODR_1000_MS */
//              delay_ms(2000);
            }

Дополнительно необходимо подключить в прерывания таймера 2 управление задержкой для функции delay_ms(uint32_t period_ms).

void __ISR(_TIMER_2_VECTOR, ipl1AUTO) IntHandlerDrvTmrInstance0(void)
{
    Drive_hab75();                  // видео драйвер
    
    if(timer_tact1>0)timer_tact1--; // таймер скорости бегущей реки
    if(timer_tact2>0)timer_tact2--; //
    
    if(time_delayi>0) time_delayi--;// фунция задержки для bmp280
    
    PLIB_INT_SourceFlagClear(INT_ID_0,INT_SOURCE_TIMER_2);
}

С компилируем проект и загрузим в микроконтроллер.


В результате получим следующий результат бегущая строка и индикация температуры и атмосферного давления.


Значок

BMP280 - учебный проект - схема 390.60 KB 600 downloads

Схема проекта в pdf. ...

Пароль на архив Catcatcat.

Значок

BMP280 - учебный проект - проект 465.53 KB 3 downloads

Проект MPLABX, библиотека графики, драйвер для светодиодной...
Login Required Message:

Это может быть интересно


  • Проект с использованием MCC часть 11Проект с использованием MCC часть 11
    Views: 863 Можно несколько облагородить программу вынести наши процедуры обработки нажатия кнопок в отдельные функции. Но вы должны понимать, что это хоть и не значительно, но будет тормозить общую скорость …
  • WiFi ESP8266 – AT команды связанные с функцией Wi-FiWiFi ESP8266 – AT команды связанные с функцией Wi-Fi
    Views: 5382 AT команды связанные с функцией Wi-Fi Функции Wi-Fi подключения, запускаться из командной строки Команда Описание  1 AT+CWMODE Проверка, настройка режима работы Wi-Fi (sta/AP/sta+AP), (не рекомендуется для новых проектов). 2 …
  • Altium Designer my Libraries, Project templates, System settings by Catcatcat V24.0 PROAltium Designer my Libraries, Project templates, System settings by Catcatcat V24.0 PRO
    Views: 284 Назвемо цей варіант поновлення для професіоналів і не тільки. Що нового? 1. Повністю змінено структуру параметрів бази даних компонента. Це дозволило повноцінної роботи Актив ВОМ. Ви відразу отримуєте …
  • Система AT команд версии V2.0 для ESP8266 и ESP32Система AT команд версии V2.0 для ESP8266 и ESP32
    Views: 13026 Появление нового модуля на базе ESP32 заставило систематизировать систему AT команд, а так же систему обновления и для модулей на базе ESP8266. Начиная с версии v2.0 в ESP8266 …
  • Самый простой диммер для светодиодного освещенияСамый простой диммер для светодиодного освещения
    Views: 3043 Светодиоды все больше входят в нашу жизнь как источники освещения и как само собой разумеющееся, это вопрос регулировки яркости. Существует множество схемных решений, но в нашем варианте мы …
  • Проект с использованием MCC часть 15Проект с использованием MCC часть 15
    Views: 1548 EUSART – Универсальный асинхронный приёмопередатчик (УАПП, англ. Universal Asynchronous Receiver-Transmitter, UART) — узел вычислительных устройств, предназначенный для организации связи с другими цифровыми устройствами. … читать на вики. Внесем изменения в нашу схему, …
  • AD9833 – Programmable Waveform Generator – part twoAD9833 – Programmable Waveform Generator – part two
    Views: 1756 Прошло время и появилась тема, что-бы закончить проект AD9833 – Programmable Waveform Generator. Приехали печатные платы. В этот раз я печатные платы заказывал в https://jlcpcb.com/ делал это в …
  • Altium Designer my Libraries, Project templates, System settings by Catcatcat V23.09Altium Designer my Libraries, Project templates, System settings by Catcatcat V23.09
    Views: 396   September 2023 component base update.  Release updates V.  – 23_09 added new components. Changed the structure of the database. Configuration file name – DXPPreferences1.DXPPrf. Added project CLUBBEST_50_Light. …
  • Простой цифровой регулятор мощностиПростой цифровой регулятор мощности
    Views: 6961 Простой регулятор мощности с цифровой индикацией. Этот проект создан как обучающий, для ознакомления с основами построения сетевых регуляторов мощности. Устройства подобного типа можно использовать для управления освещением, скоростью …
  • NeoPixel LED and PIC24NeoPixel LED and PIC24
    Views: 649 Популярность однопроводной шины для управления светодиода типа WS2812 не ослабевает, а новые типы светодиодов в корпусах 3,5*3,5мм, 2,0*2,0мм становяться все больше привлекательными. Построение дисплеев для анимации требуют все …



 

Поделись этим!

Catcatcat

catcatcat

Development of embedded systems based on Microchip microcontrollers.

Продолжайте читать

НазадДалее

Комментарии

Добавить комментарий

This site uses Akismet to reduce spam. Learn how your comment data is processed.