Views: 2167
Какие задачи нам позволяют решать структуры и объединения?
Для разработчика встроенных систем эффективность и компактность кода всегда на первом месте. Если программировании на Ассемблере ты сам определяешь как и где располагаются данные, то при программировании на Си надо позаботиться, что бы объяснить компилятору как ты хочешь, что бы данные были расположены. Для чего это надо, в первую очередь, для удобства обработки и обращения к данным.
Например, мне необходимо, чтобы данные были расположены последовательно в памяти. Для этого я опишу структуру, например:
// struct { int16_t s_CLt; // данные в формате 16 байт со знаком int16_t s_tNd; // int16_t s_rEL; // uint8_t s_SEc; // данные в формате 8 байт без знака (только положит значение) uint8_t s_Nin; // unsigned Accident :2; // данные в формате 2 байта без знака (только положит значение) unsigned Freezing :1; // данные в формате 1 байта }EE; // данные подлежащие хранению в еепром //
Это будет гарантировано, что данные в памяти будут расположены последовательно и займут 9 байт (если система процессора микроконтроллера 8 битная) или 6 слов (если 16 битная). Один дополнительный байт будут занимать две переменные описанные как Accident и Freezing, они займут соответственно 0 – 1 байт (Accident ) и 2 байт (Freezing).
Обратиться т.е записывать данные и читать можно таким образом, например:
// // Для записи EE.s_CLt = 4562; EE.Accident = 2; // Для чтения temp = EE.s_CLt; temp1 = EE.s_Nin; //
Со структурами struct все довольно понятно, это расположение данных последовательно в памяти и удобный доступ к ним, особенно, если надо писать какие-то флаги управления и потом данные “скопом” передавать через какой либо интерфейс на другое устройство. Но часто возникает необходимость например иметь представление одних и тех же данных и в виде байта (или слова) и в виде бит. Как это сделать, для этого в Си есть гибкий механизм объединения union.
Например, для передачи данных через последовательный порт нам необходимо иметь доступ к данным ка к байту, а для эффективности управления флагами управления содержащимся в этом байте, и меть доступ как к биту. Вот такой фокус и позволяют делать объединения. Еще раз структуры последовательно располагать данные в памяти, объединения описывать одни и те же данные разными именами и при этом разными типа данными.
Например, мы имеем структуру данных:
// struct { int16_t s_CLt; // данные в формате 16 байт со знаком uint8_t s_SEc; // данные в формате 8 байт без знака (только положит значение) unsigned Accident :2; // данные в формате 2 байта без знака (только положит значение) unsigned Freezing :1; // данные в формате 1 байта }EE; // //
Визуально это выглядит так:
Вся структура занимает 4 байта. EE.s_CLt занимает 2 байта, EE.s_SEc занимает 1 байта, переменные Accident, Freezing (два и и один байт) будут размещены в 4 байте.
Теперь нам, например, необходимо работать с битами переменной s_CLt, можно конечно использовать операциями с битами, например, нам надо контролировать состояние бита 0 в этой переменной мы, можем вычислить так, выполняем побитовое “&” с переменной и в зависимости от состояния операции выполняет если true или falce:
// if(EE.s_CLt & 0b0000000000000001) ******; else *******; //
Но можно каждому биту присвоить свое имя, это улучшает понимание программы и не рисвоать, что нарисовано выше например писать просто так:
// if(EE.FLED1) ******; else *******; //
Где EE.FLED1 мы дали имя биту 0 переменной EE.s_CLt, как это сделать? В нашу структуру надо внедрить объединение. Структуры и объединения можно как угодно комбинировать для всевозможного описания данных в памяти для удобной последующей обработки. В нашем варианте это будет выглядеть так:
// struct { //- union { int16_t s_CLt; // данные в формате 16 байт со знаком struct { unsigned FLED1 :1;// название бита 0 unsigned FLED2 :1;// название бита 1 unsigned FLED3 :1;// название бита 2 //***** }; }; uint8_t s_SEc; // данные в формате 8 байт без знака (только положит значение) unsigned Accident :2; // данные в формате 2 байта без знака (только положит значение) unsigned Freezing :1; // данные в формате 1 байта }EE; // //
Переменную s_CLt мы помещаем, в обеднение в котором находиться эта переменная и новая внутренняя структура. Название ни объединению, ни структуре мы не даем. В этом варианте мы сможет обращаясь, например, к EE.FLED1 контролируя или изменяя состояние бита 0 переменной EE.s_CLt.
Как это выглядит визуально.
Еще раз к пониманию структур, это возможность “объяснения” компилятору, что данные надо расположить в памяти последовательно. А к пониманию объединений, что данные одни и те же могут иметь разное название. Надеюсь я смог “на пальцах” объяснить эти гибкие особенности Си.
И для окончания, например, мне необходимо обработать эти 4 байка как одно 32 битное слово, как это сделать? Это сделать просто если нашу структур поместить в объединение и добавит в ней нашу 32 битную переменную:
union { struct { //- union { int16_t s_CLt; // данные в формате 16 байт со знаком struct { unsigned FLED1 :1;// название бита 0 unsigned FLED2 :1;// название бита 1 unsigned FLED3 :1;// название бита 2 //***** }; }; uint8_t s_SEc; // данные в формате 8 байт без знака (только положит значение) unsigned Accident :2; // данные в формате 2 байта без знака (только положит значение) unsigned Freezing :1; // данные в формате 1 байта }; uint16_t s_32bit; // в ней все наши биты }EE; //
Теперь при необходимости можно обратиться к переменной EE.s_32bit и получить все данные или изменить одной операцией.
Визуально это можно представить так:
Файлы для загрузки
Просто о структурах и объединениях в Си 343.32 KB 165 downloads
Проект с примером организации данных ...Это может быть интересно
- Мониторинг температурыViews: 1372 Настоящий проект создан как обучающий с применением библиотек ds18b20 и LCDHD44780 и компилятора Microchip MPLAB XC8 C Compiler V1.12. Если необходимо иметь информацию по состоянию температуры в помещении или в здании, с количеством до 6 точек (16), то …
- Audio-bluetooth modules BK8000L (noname)Views: 658 Еще один вариант, так сказать недоразумения Audio-bluetooth modules BK8000L (noname). Его отличительной маркировкой служат два отверстия в плате и надпись R2. Отличают его от модулей на чипе BK8000L, …
- Оптосимистор и его применениеViews: 19647 Эрве Кадино “Цветомузыкальные установки” Ответ на вопрос – управление мощным тиристором или симистором, от терморегулятора. Статья в pdf[wpdm_file id=129 template=”link-template-calltoaction3.php”] Оптосимистор принадлежат к классу оптронов и обеспечивают очень хорошую …
- MCC PIC24 – модуль OUTPUT COMPARE – в режиме генератора звуковых сигналовViews: 607 При проектировании простых устройств автоматики, часто необходимо иметь механизм звукового оповещения. Самый верхний уровень, это формирование голосовых сообщений, но об этом, как то по позже… В самом примитивном …
- MAX7219/21 и 8х8 LED дисплеиViews: 923 MAX7219, MAX7221 предназначены для вывода информации на 8 разрядов семисегментного индикатора, но на нем легко организовать вывод на светодиодные индикаторы 8х8. продолжение следует…. Это может быть интересно
- Altium Designer my setup system and project structure V23.3Views: 182 Оновлення бази даних та шаблонів від березня 2023 року. Updating the database and templates from March 2023. Altium Designer my Libraries, Project templates, System settings by Catcatcat. Дивись …
- MCC PIC24 – модуль OUTPUT COMPARE – режиме ШИМViews: 1119 Во многих системах управления, для формирования управляющих сигналов требуется модуль ШИМ, он позволяет не только формировать импульсы заданной длительности, но и с применением обычного RC фильтра строить простые …
- LATINO – открытый проект ch-светомузыкиViews: 1656 Проект построенный на некоторых принципах ch-светомузыка. Проект ознакомительный предназначен, для самостоятельного построения простого и эффективного светосинтезатора. Вывод осуществляется на ВОУ собранной на драйверах HL1606. Для этого была …
- Часы + Календарь + Термометр + …Views: 2720 Часы + Календарь + Термометр + Индикатор влажности + Секундомер + Дистанционное управление на ИК лучах (пульты на RC-5 протоколе) + Автоматическая регулировка яркости + Возможность вывода данных через USB, …
- ESP8266 процедура получение данных даты и времени от серверов точного времени.Views: 5907 Эта функция доступна уже в версии 1.6.1. Для многих приложений, необходимо часы реального времени, если в вашем проекте есть модуль WiFI ESP8266, то легко можно сделать следующим образом. …