Измерение частоты


Измерение частоты классически можно выполнить двумя способами.

Способ первый.

Необходимо за фиксированный промежуток времени подсчитать количество периодов измеряемой частоты. После этого необходимо количество импульсов разделить на время измерения. Точность измерения зависит от длительности измеряемого промежутка времени. Чем длиннее промежуток, тем точнее можно выполнить изменения.

 PIC24-08-01

 Второй способ.

Это измерять длительность одного периода и вычислитель частоту. Точность измерения зависит от частоты тактовых импульсов, чем выше и стабильней частота тактовых импульсов тем выше разрешение и точнее измерения.

 PIC24-08-02

К каждом методе есть свои плюсы и свои минусы. Если необходимо высокая точно в первом это длительность измерения, если надо быстро измерять, то необходимо высокая тактовая частота.

Для измерения частоты (в нашем варианте частоты электросети), модифицируем нашу схему следующим образом.

 PIC24-08-04

Все эти измерения можно выполнить при помощи встроенного таймера. Так-как у нас таймер 1 и 2 занят формированием временных интервалом. Поэтому  будем для измерения частоты использовать сборку на таймерах TMR4 и TMR5. Для входа сигнала будем использовать Т4СК.

PIC24-08-03

Так как периферийные модули по умолчанию “никуда не подключен”, то первым делом необходимо настроить регистры конфигурации выбора периферийного модуля. Нам надо определиться к какой ножке микроконтроллера мы подключим его вход. У нас свободна 14 нога. Это функция RP5. Для подключения входа T4CK к ноге 14 на необходимо в регистра настройки входа RPINR4 загрузить значение 5.

Для настройки входа таймера обратимся к регистрам управления входами периферийных устройств.

Название входа Имя периферийного модуля Регистр Биты конфигурации
External Interrupt 1 INT1 RPINR0 INTR1<4:0>
External Interrupt 2 INT2 RPINR1 INTR2R<4:0>
Timer2 External Clock T2CK RPINR3 T2CKR<4:0>
Timer3 External Clock T3CK RPINR3 T3CKR<4:0>
Timer4 External Clock T4CK RPINR4 T4CKR<4:0>
Timer5 External Clock T5CK RPINR4 T5CKR<4:0>
Input Capture 1 IC1 RPINR7 IC1R<4:0>
Input Capture 2 IC2 RPINR7 IC2R<4:0>
Input Capture 3 IC3 RPINR8 IC3R<4:0>
Input Capture 4 IC4 RPINR8 IC4R<4:0>
Input Capture 5 IC5 RPINR9 IC5R<4:0>
Output Compare Fault A OCFA RPINR11 OCFAR<4:0>
Output Compare Fault B OCFB RPINR11 OCFBR<4:0>
UART1 Receive U1RX RPINR18 U1RXR<4:0>
UART1 Clear To Send U1CTS RPINR18 U1CTSR<4:0>
UART2 Receive U2RX RPINR19 U2RXR<4:0>
UART2 Clear To Send U2CTS RPINR19 U2CTSR<4:0>
SPI1 Data Input SDI1 RPINR20 SDI1R<4:0>
SPI1 Clock Input SCK1IN RPINR20 SCK1R<4:0>
SPI1 Slave Select Input SS1IN RPINR21 SS1R<4:0>
SPI2 Data Input SDI2 RPINR22 SDI2R<4:0>
SPI2 Clock Input SCK2IN RPINR22 SCK2R<4:0>
SPI2 Slave Select Input SS2IN RPINR23 SS2R<4:0>

Функции ввода

Функция Номер ножки Код для записи в регистр
RP0 4 0
RP1 5 1
RP2 6 2
RP3 7 3
RP4 11 4
RP5 14 5
RP6 15 6
RP7 16 7
RP8 17 8
RP9 18 9
RP10 21 10
RP11 22 11
RP12 23 12
RP13 24 13
RP14 25 14
RP15 26 15

Настройка входа таймера:

Конфигурирование таймеров: (будем настраивать для 32 битного режима):

Чтобы настроить Timer2/3 или Timer4/5 для 32-разрядной работы необходимо:
1. Установить T32 бит (T2CON <3> или T4CON <3> = 1).
2. Настроить предделителя для Timer2 или Timer4 битами TCKPS1: TCKPS0.
3. Настроить вход для тактовых импульсов и режимов работы с помощью TCS и TGATE бит. Если TCS установлен для внешней синхронизации, RPINRx (TxCK) должны быть настроены на доступные RPn вход.
4. Настроить период работы таймера загрузив регистр PR. PR3 (или PR5) будет содержат старшее слово, в то время как PR2 (или PR4) содержать младшие слово.
5. Если требуется прерывания, установить биты в регистрах T3IE или T5IE; использовать приоритет бит, T3IP2: T3IP0 или T5IP2: T5IP0, чтобы установить прерывание приоритет. Обратите внимание, что в то время как Timer2 или Timer4 управления таймера, прерывания появляется как Timer3 или Timer5 прерывания.
6. Установить TON бит (= 1). 

 Для работы нашей схемы нам необходимо на 14 ножку контроллера подключить подтягивающий резистор. За активацию подтягивающих резисторов отвечают регистры CNPU1 и CNPU2. Для нашего контроллера соответствие с выводами контроллера следующее:

Регистр Управляющий бит Вывод контроллера
CNPU1 CN0PUE 12
CNPU1 CN1PUE 11
CNPU1 CN2PUE 2
CNPU1 CN2PUE 3
CNPU1 CN3PUE 4
CNPU1 CN4PUE 5
CNPU1 CN5PUE 6
CNPU1 CN6PUE 7
CNPU1 CN7PUE
CNPU1 CN8PUE
CNPU1 CN9PUE
CNPU1 CN10PUE
CNPU1 CN11PUE 26
CNPU1 CN12PUE 25
CNPU1 CN13PUE 24
CNPU1 CN14PUE 23
CNPU1 CN15PUE 22
CNPU2 CN16PUE 21
CNPU2 CN17PUE
CNPU2 CN18PUE
CNPU2 CN19PUE
CNPU2 CN20PUE
CNPU2 CN21PUE 18
CNPU2 CN22PUE 17
CNPU2 CN23PUE 16
CNPU2 CN24PUE 15
CNPU2 CN25PUE
CNPU2 CN26PUE
CNPU2 CN27PUE 14
CNPU2 CN28PUE
CNPU2 CN29PUE 10
CNPU2 CN30PUE 9

Для подключение подтягивающего резистора к ножке 14 , необходимо выполнить команду

 Так как в нашем примере, мы используем внутренний тактовый генератор, то измерения соответственно будет менее точные если бы мы использовали кварцевую стабилизацию частоты. Для корректировки длительности, будем использовать регистр PR1.

Для измерения частоты, добавить в цикл прерывания от таймера Т1 две команды:

 т.е. таймер Т1 формирует заданный нами интервал времени, по прерыванию таймера , мы считываемым значение таймера Т4, а затем обнуляем его.

Для индикации в главном цикле программы добавим

 теперь внизу дисплея мы увидим измеряемую частоту в герцах. Если период измерения 1 секунда, то измерять будем с точностью до 1 Герца, для увеличение точности до 0,1 Герца или 0,01 герца, нам надо соответственно увеличить время измерения.

 Фото для первого варианта, когда период измерения равен 1 секунде.

 PIC24-08-05

 Но для контроля качества частоты в сети нам необходимо более высокая точность, поэтому увеличим период измерения до 10 секунд. Для это нам необходимо добавить делитель, программный, чтобы увеличить время измерения до 10 секунд.

а для красоты, индикации десятых долей, включит индикацию запятой перед младшим разрядом.

 pic24-08-0610 секунд на измерение это уже много. А если необходимо измерять частоту с точностью до 0,01 Герца, так это надо ждать 100 СЕКУНД!!!, а эффект усреднения который может за это время внести свои погрешности. Вообще сделаем вывод, для оперативного контроля частоты электросети такой метод не эффективен. Хотя при написании этого урока, наблюдая за частотой сети, она колебалась от 50,04 – 50,31 Герца (в режиме измерения 100 секунд). 

Испробуем второй метод измерения длительности периода (или импульса). Благо, что сам модуль микроконтроллера позволяет это делать.

 

продолжение следует…


Это может быть интересно


  • ch-4060 – регулятор температуры и влажности на датчике DHT11/DHT22/AM2302ch-4060 – регулятор температуры и влажности на датчике DHT11/DHT22/AM2302
    На плате ch-4000 очень легко собрать устройство регулятора температуры и влажности. Датчик DHT11  самый недорогой вариант для создания такого устройства, правда точность его не велика, но для бытовых устройств он даже …
  • Интерактивные LedИнтерактивные Led
    Тема проекта   продолжение следует…. Это может быть интересно Метки:LED
  • AD9833 – Programmable Waveform Generator – part twoAD9833 – Programmable Waveform Generator – part two
    Прошло время и появилась тема, что-бы закончить проект AD9833 – Programmable Waveform Generator. Приехали печатные платы. В этот раз я печатные платы заказывал в https://jlcpcb.com/ делал это в первый раз …
  • Analog-to-Digital Converter with Computation Technical BriefAnalog-to-Digital Converter with Computation Technical Brief
    Аналого-цифровой преобразователь с вычислительным модулем. ВВЕДЕНИЕ Аналого-цифровой преобразователь (ADC) с вычислительным модулем (ADC2) в 8-разрядном микроконтроллере Microchip имеет встроенные вычислительные функции, которые обеспечивают функции пост-обработки, такие как передискретизация, усреднение и …
  • Toyota Auto Fader – Модуль включения усилителяToyota Auto Fader – Модуль включения усилителя
    Toyota Auto Fader – Модуль включения усилителя. Часто автолюбители прибегают к замене штатного головного устройства на универсальное мультимедийное, в котором значительно расширены функциональные возможности. Если возникает желание оставить в работе …
  • My libraries for Altium DesignerMy libraries for Altium Designer
    My libraries for Altium designer  (V – 28/05/2020) (c) 2020 CATCATCAT ELECTRONICS THIS LIBRARIES IS SUPPLIED BY CATCATCAT ELECTRONICS “AS IS”. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO …
  • Гаджеты для домашней автоматики – Датчик движенияГаджеты для домашней автоматики – Датчик движения
    Управление светодиодным освещением – Датчик движения. Данный гаджет предназначен для управления освещением рабочих столов (кухонных столов), освещение прихожих, освещение зеркал в прихожих, автоматическое включение света в коридорах. Датчик позволяет определить наличие …
  • USB K-L-line адаптерUSB K-L-line адаптер
    USB K-L-line адаптер предназначен для связи персонального компьютера с диагностической шиной автомобиля – интерфейс ISO-9141. Этот проект предназначен для сборки недорого устройства с использованием специально для этой цели разработанной печатной …
  • Емкостной сенсорЕмкостной сенсор
    Изучаем изготовление емкостных сенсоров на PIC-микроконтроллере. Конструкция емкостных сенсоров имеет вид: Емкостные сенсоры строятся по схеме высокочастотного генератора, сам принцип основан на измерение частоты этого генератора. Частота зависит от емкости …
  • MTouch® Модуль Емкостной Библиотеки для MPLAB®X Code Configurator (MCC)MTouch® Модуль Емкостной Библиотеки для MPLAB®X Code Configurator (MCC)
    Введение MTouch ® Модуль Емкостной Библиотеки для MPLAB ® X Code Configurator (MCC) позволяет быстро и легко генерировать решение кода на  Cи для емкостной сенсорной кнопки, датчика приближения и слайдера. В записи нет …


10-бит, высокоскоростной, аналого-цифровой преобразователь, часть 2


Измерение переменного напряжения, вычисление TrueRMS.

Этот урок обучения работе с АЦП будет предназначен для измерения параметров переменного тока, это актуально к нашим электросетям, где качество поставляемой электроэнергии является проблемой. За основу вычисления величины переменного напряжения возьмем информацию на сайте http://www.easycalculation.comTrueRMS переменного тока, это количество передаваемой энергии которое в идеале соответствует такой же величине постоянного тока.

В нашей электросети сети стандарт 230 вольт, это в идеале 0,707 от амплитудного значения переменного тока в сети, т.е. если максимальное значение амплитуды умножить на 0,707, то мы получим наши 230 вольт. По такому принципу работают большинство вольтметров. В последнее время огибающая кривой не соответствует идеалу синусоиды, а по этому и количество передаваемой энергии далека от идеала. Наша задача определить реальное количество энергии передаваемое в нашей электросети с учетом всех (возможно измеренных) искажений.

pic24-15-600x240
 

Для измерения переменного напряжения, на нашу макетную плату необходимо добавить несколько компонентов. Для измерения необходимо будет применить трансформатор, для гальванической развязки.

Схема.

pic24-08-071

Для вычисление истинного напряжения TrueRMS необходимо выполнить сканирования одного периода напряжения сети. Т.е. необходимо произвести n- количество измерений. В идеале чем чаще мы сделаем выборки тем точнее будет расчет реального напряжения.

pic24-16-600x256

Для измерения истинного напряжения в сети нам необходимо произвести выборку одного периода, или провести выборку на протяжении длительности более одного периода, но я думаю, что точнее будет когда мы будем для измерения выбирать один период.

Для измерения нам скорости от RC генератора АЦП будет недостаточно, поэтому Первое, что сделаем переключимся на системный генератор. Нам необходимо будет определиться какое количество измерений нам необходимо сделать за один период. Первое – необходимо организовать формирования массива данных которые потом понадобятся для вычисления.

Необходимо определить, скорость преобразования. Скорость преобразования зависит от тактовой частоты. В нашем проекте тактовая 32 мГц. Это длительность 31,25 ns.   Для преобразователя необходимо 12 TAD для конвертирования 10 данных. Длительность вычисляется по формуле TAD = TCY • (ADCS<7:0>+1). Где TCY = 2 * Tosc для нашего микроконтроллера. Tosc=32 мГц.

Для буфера измерений отведем буфер 125 измерений. Для тактовой частоты 32 мГц и измеряемой 50 Гц нам необходимо установить для битов  ADCS7:ADCS0: – 63, длительность выборки SAMC4:SAMC0: 28.

Для вычислений можно использовать файл ME (подготавливается).

В функции прерывания от АЦП выполним процедуру считывания регистров буфера АЦП и загрузки в буфер данных 

Проект вычисляет TrueRMS переменного тока, запоминает минимальное и максимальное напряжение за все время работы, выводит на индикатор амплитудное значение.

Сам механизм вычисления:

 


Фото проекта.

На дисплей выводиться информация по минимаксам (минимальное и максимальное значение напряжения зафиксированное за время работы, а также максимальное амплитудное. Посредине внизу напряжение в сети измеренное методом TrueRMS.

pic24-08-06


Проект, среда разработки MPLAB® X v1.70, компилятор С MPLAB XC16 v1.11.

Значок

10-бит, высокоскоростной, аналого-цифровой преобразователь, часть 1 72.81 KB 1032 downloads

10-бит, высокоскоростной, аналого-цифровой преобразователь. Проект,...
Значок

10-бит, высокоскоростной, аналого-цифровой преобразователь, часть 2 99.45 KB 827 downloads

10-бит, высокоскоростной, аналого-цифровой преобразователь,...

10-бит, высокоскоростной, аналого-цифровой преобразователь, часть 1


Измерение постоянного напряжения.

Ну и  как можно обойти АЦП, тем более что он позволяет сканировать со скоростью до 500 тысяч преобразование в секунду (500 ksps).

Структурная схема

pic24-13-600x600

И так мысли в слух:

В PIC24 серии АЦП более продвинутый, более гибкая схема управления, выборки и конвертирования и получения результата. принцип работы прост усилитель (S/H) выборки/хранения может через коммутаторы подключаться к контактам контроллера настроенным как аналоговые входы. Через эти контакты он получает входное напряжения которое он запоминает для последующей оцифровки в АЦП. Управление выборкой сигнала может быть управляться как вручную, так и автоматически. Существует минимальное время выборки для того, чтобы усилитель выборки/хранения дал желаемую точность преобразования, т.е. чтобы измерительная емкость смогла полностью зарядиться от входного сигнала. Далее включается в работу АЦП и запускается цикл преобразования – это время, необходимое для преобразования напряжения формируемое усилителем выборки/хранения на его входе. Весь процесс может обеспечивается триггером управления работой АЦП, он автоматически заканчивает время выборки и начинает аналогоцифровое преобразование. Управлявшие сигналы для триггера могут быть взяты из различных аппаратных средств контроллера, или он может управляться вручную из программного обеспечения. Для АЦП требуется один такт (TAD), для преобразования каждого бита результата и плюс два дополнительных такта, или в общей сложности 12 TAD циклов для 10-разрядного преобразования. Когда время преобразования будет завершено, результат загружается в один из 16 буферов АЦП.  АЦП может формировать прерывания для программного обеспечения. Сумма времени выборки и АЦП преобразования, дает общее время преобразования.
Один из режимов преобразования – есть режим непрерывного преобразования, когда триггер автоматического преобразования, использует счетчик и генератор АЦП для формирование времени между преобразованиями. Режим Auto-Sample и триггер автоматического преобразования могут быть использованы совместно, чтобы обеспечить циклическое преобразование без вмешательства программы.

 АЦП в общей сложности использует 22 регистра.

Регистры управления
Модуль имеет шесть регистров управления и состояния:
• AD1CON1:  – регистра управления 1
• AD1CON2:  – регистра управления 2
• AD1CON3:  – регистра управления 3
• AD1CHS:     – выбор входного канала
• AD1PCFG:  – конфигурация порта
• AD1CSSL:  – регистра выбора входов измерения для режима последовательного сканирования.
AD1CON1, AD1CON2 и AD1CON3 регистры контролировать общую работу модуля АЦП. Это подразумевает подключение модуля,
Настройка времени преобразования и источники опорного напряжения, выбрав отбора проб и Преобразование триггеров и ручного управления образца / преобразование последовательности.
AD1CHS регистр (регистр 17-4) выбирает входных каналов для подключения к S/H усилитель. Она также позволяет выбор входных мультиплексоров и выбор источника опорного напряжения для дифференциального режима работы.
AD1PCFG регистр (регистр 17-5) настраивает порты ввода / вывода аналоговых входов или цифровых входов / выходов.
AD1CSSL регистр (регистр 17-6) выбирает каналы должны быть включены для последовательного сканирования.

АЦП Буферы результата измерений.

Модуль включает в себя 16-регистров данных, в зависимости от режима работы АЦП может вести автоматическую запись в эти регистры. Для большей гибкости, если скорости работы процессора недостаточно, чтобы считать все 16 регистров, за время одного конвертирования, можно включить режим, года запись ведется в восемь младших , а процессор, в это время, может считывать информацию со старших восьми регистров и наоборот.

Для изучения работы АЦП необходимо будет немного изменить схему.

pic24-14

Светодиод перенесем на RB4, а вход RA0, будем использовать для измерения напряжения. Для этого подключим потенциометр на 20 кОм к шинам питания контроллера, а сигнал с “движка” подадим на RA0.

Для настройки АЦП добавим в нашу программу следующие строки.

Эти строки позволяют настроить полностью АЦП и входы микроконтроллера, в этом примере мы задаем тактирование от внутреннего RC-генератора АЦП. В основном необходимые пояснения сделаны в комментариях.

Для преобразования числа в символы, будем использовать следующую функцию:

void bin_dec(int data,char mode,char vyv,char raz);

где, data число в диапазоне от -9999 до +32768
mode – положение десятичной точки 0- нет точки, 1-4 после 2-4 знакоместа
vyv – не печатать пустые знакоместа 0-печатать все 5 знакомест, 1-не печатать
raz – размер выводимых цифр 0/1-нормальные, 2-7 увеличение в соответствующее раз

Логика преобразования числа в символ простая, необходимо математически выделить число и преобразовать его в код

А теперь сам процесс измерения. Изменение будем проводить когда контроллер спит, чтобы уменьшить цифровой шум, это как один из вариантов работы, хотя можно было сделать вариант усреднение результатов измерения, благо 16 регистров имеется.

Первое включит прерывание от АЦП

Создадим функцию прерывания, только сброс бита прерывания

И сам процесс измерения, один из вариантов

Запускаем автоматическое измерение и переходим в спящий режим, чтобы при измерении избавиться от цифрового шума микроконтроллера. Ждем прерывания от АЦП. По прерыванию микроконтроллер просыпается, сбрасывается флаг прерывания. Мы останавливаем измерение, считываем измеренное значение. Затем выводим полученное значение на дисплей и т.п. После этого весь процесс измерения повторяется.

 


Видео работы программы.

  


Проект, среда разработки MPLAB® X v1.70, компилятор С MPLAB XC16 v1.11.


I2C™ – INTER-INTEGRATED CIRCUIT и PIC24


Для работы с периферийными устройствам I2C™ просто незаменим. Дисплеи, память, драйверы и много другое…

В нашем примере мы будем подключать дисплей RDX077 (на драйвере UC1601S) к нашей макетной плате. Почему RDX077 – пока на настоящий момент, это самый доступный индикатор (для меня) с приемлемой ценой. Схема подключения:

pic24-10

RDX0077 – графический индикатора с драйвером UC1601s. В этой главе научимся выводить информацию на индикатор. Описывать сам драйвер UC1601s здесь не будем, будем создавать библиотеку для работы с индикатором.

Первое что необходимо выбрать это модуль I2C, у нас подключен индикатор ко второму модулю. Индикатор может работать на скорости до 400 кГц, поэтому необходимо разобраться как настроить необходимую скорость в модуле. За скорость отвечает регистр I2C2BRG из описания мы можем видеть формулы для расчета скорости и таблица с приведенными расчетами.

pic24-11

 Для стандартных тактовых частот приведены расчетные данные:

Заданная частота шины Fscl

Fcy=Fosc/2 Значение в I2CxBRG Реальная частота Fscl
(Десятичное) (Hex)

100 kHz

16 MHz

157

9D

100 kHz

100 kHz

8 MHz

78

4E

100 kHz

100 kHz

4 MHz

39

27

99 kHz

400 kHz

16 MHz

37

25

404 kHz

400 kHz

8 MHz

18

12

404 kHz

400 kHz

4 MHz

9

9

385 kHz

400 kHz

2 MHz

4

4

385 kHz

1 MHz

16 MHz

13

D

1.026 MHz

1 MHz

8 MHz

6

6

1.026 MHz

1 MHz

4 MHz

3

3

0.909 MHz

Будем использовать максимальную возможную скорость шины 400 кГц.

Во всех новых моделях микроконтроллеров в основном по два модуля I2C. В нашем варианте подключение производиться к модулю 2. Для работы с  индикатором нам понадобиться написать 7 функций по работе с интерфейсом. Некоторое отличие от стандартных функций будет состоять в том, что они будут ориентированы на модуль 2, а также формирование состояния старт будет объедено с указанием для драйвера индикатора записью адреса и  инициализацию типа передачи и команды запись или чтение.

Для работы с многими устройствами I2C я обхожусь своими самодельными функциями, почему самодельными, потому что я знаю как они работают и что от них можно ожидать:

Команда начальной инициализации модуля

void I2C_Open (unsigned int FCLOCK);// инициализация, значение частоты шины в килогерцах (например, 100,150,200….400)
настраивает работу модуля.

Команда стоп

void i2c_stop (void); // формирование стоп

Две команды старт

unsigned char i2c_start (unsigned char adres, unsigned char C_D, unsigned char R_W); // адрес устройства и управление младшими битами
unsigned char i2c_restart (unsigned char adres, unsigned char C_D, unsigned char R_W);

Команда записи байта данных

unsigned char i2c_write (unsigned char data); //запись байта

И две команды чтения

unsigned char i2c_read_ack (void); //чтение с подтверждением
unsigned char i2c_read_noack (void); //чтение без подтверждения

Мое мнение такое чем их меньше тем проще. Для работы с индикатором необходимо сделать библиотеку которая бы упрощала вывод на дисплей символьной информации и графики. О создании библиотеки говорить не буду это не интересно скачать её можно из раздела библиотеки. В этой главе мы ограничимся примером для демонстрации вывода на индикатор текста и графических примитивов.

Первое, что всегда в таких вариантах появляется желание что бы на индикаторе, что нибудь отобразилось. В библиотеке есть функция вывода строк на дисплей String_LCD её формат, на примере:

Теперь все уже понятно и первая программа для работы с графическим LCD на драйвере на драйвере UC1601S будет выглядеть так:

Думаю для начала этого более чем достаточно.


Результат работы программы:

pic24-12

Теперь необходимо скачать проект и поэкспериментировавший с выводом сообщений и графики.


Описание библиотеки в разделе Библиотеки.  Демонстрационное видео функций библиотеки.

 


Файлы для загрузки

Демопроект с полным текстом + библиотека (графические примитивы и символы).

Значок

I2C™ - INTER-INTEGRATED CIRCUIT и PIC24 102.25 KB 793 downloads

I2C™ - INTER-INTEGRATED CIRCUIT и PIC24 ...



Это может быть интересно


  • ESP32-первое знакомствоESP32-первое знакомство
    Музыкальная тема к статье, слушаем: Настало время познакомиться c ESP32 и для меня, для этого я приобрел в ГАММЕ отладочную плату с модулем ESP-WROOM-32 (ESP32-DevKitC). Первая задача, как он подключается, …
  • Дисплей KD035C-3A подключение и управлениеДисплей KD035C-3A подключение и управление
    Дисплей KD035C-3A производиться компанией SHENZHEN STARTEK ELECTRONIC TECHNOLOGY CO.,LTD Характеристики Параметр Спецификация Единицы измерения Размер дисплея 70.08(H)*52.56(V) (3.5inch) mm Тип дисплея TFT active matrix Цветовая гамма 65K/262K colors Разрешение 320(RGB)*240 dots …
  • ESP8266 применение в проектахESP8266 применение в проектах
    (Актуально только для версий прошивки 1.хх) ESP8266 показала себя как надежное и безотказное устройство для обмена данными с применением WIFI. Я использую ESP8266 исключительно через UART, с применением AT команд. Все …
  • Бегущие огни на WS2812BБегущие огни на WS2812B
    В настоящее время большой популярностью стали пользоваться светодиоды со встроенным драйвером WS2812B. Текущий проект предназначен показать возможность использования и управления этими светодиодами. Это и проект и исследование по работе с …
  • NeoPixel LED and PIC24NeoPixel LED and PIC24
    Популярность однопроводной шины для управления светодиода типа WS2812 не ослабевает, а новые типы светодиодов в корпусах 3,5*3,5мм, 2,0*2,0мм становяться все больше привлекательными. Построение дисплеев для анимации требуют все большей производительности …
  • Модуль CAN в микроконтроллерах PIC18Модуль CAN в микроконтроллерах PIC18
    Введение   CAN последовательный интерфейс связи, который эффективно поддерживает распределенное управление в реальном масштабе времени с высокой помехозащищенностью. Протокол связи полностью определен Robert Bosch GmbH, в спецификации требований CAN 2.0B …
  • Четырех канальный терморегулятор ch-4000Четырех канальный терморегулятор ch-4000
     Четыре независимых канала регулирования температуры, одновременно можно подключить 16 датчиков температуры DS18B20 с удалением до трехсот метров. Можно для регулировки выбрать любой датчик, подключенный к устройству. Каждый канал может работать как в …
  • I2C MODULE – PIC18F25K42 Device ID Revision = A001I2C MODULE – PIC18F25K42 Device ID Revision = A001
    I2C MODULE Обход ошибок в версии I2C MODULE – PIC18F25K42 Device ID Revision = A001 В Серии K42 применен совершенно новый модуль шины I2C, который позволяет поддерживать все режимы этой …
  • MPLAB® Harmony – или как это просто! Часть 3.MPLAB® Harmony – или как это просто! Часть 3.
    Часть третья – копнём немного глубже. Вы наверное заметили, что во второй главе, вроде сначала все шло как по маслу, а потом, что бы заморгали светики, я вставил в код …
  • Простой цифровой милливольтметр постоянного токаПростой цифровой милливольтметр постоянного тока
    Простой цифровой вольтметр постоянного тока. Три диапазона измерений с автоматическим переключением 1 – 0,001 – 0,999 V, 2 – 0,01-9,99 V, 3 – 0,1-99,9. Четыре управляемых выхода с возможностью задания функции контроля и времени реакции на …


Output Compare – формирование импульсов


Любое обучение преследует определенную цель и сейчас изучение разных возможностей, это цель создания определенного устройства, название которого будет раскрыто позже.

А пока надо научиться настраивать PIC-контроллер, для аппаратного формирования на выходе заданной частоты импульсов.

Для этого будем использовать модуль Output Compare. Он имеет возможность сравнивать значение выбранное времени (подразумевается значение таймер) со значение одного или двух регистров сравнения (в зависимости от выбранного режима). Кроме того, он имеет возможность формировать на выходе единичный импульс, или формировать непрерывную последовательность выходных импульсов, по заданным событиям. Как и большинство PICmicro ® периферийных устройств, он также имеет способность генерировать прерывания в момент события сравнения.

В нашем используемом для обучении контроллере (PIC24FJ64GA002) доступны 5 таких устройств. Все выходные каналы сравнения функционально идентичны. Обозначение они носят OC1 – OC5. Разработчики PIC24 подошли более глубоко к конфигурированию периферии, это связано необходимостью создания  возможности для подключения периферийного устройства к необходимым выводам микроконтроллера, таким подключением занимаются регистры настройки подключения периферийных устройств RPINR0 – RPINR23. В описании можно увидеть обозначение RP0, RP1… и так далее в зависимости от количества выводов микроконтроллера. Это выводы к которым могут быть подключены входы или выходы цифровых периферийных модулей. Естественно более конкретно, что может быть подключено, а что нет надо светиться с описанием на конкретный микроконтроллер. Функция подключения настолько гибки, что могут подключать один выход периферийного устройства к нескольким ножкам микроконтроллера или один вход, для разных периферийных устройств.

Схема, задача – на 26 ножке микроконтроллера получить меандр с заданной частотой.

pic24-09

В нашем случае мы конфигурируем выход OC1 на (RB15) 26 ножку микроконтроллера. Это вывод RP6. Наш выход Output Compare 1 (OC1) соответствует функциональному номеру 18 (все эти данные надо смотреть в описании). Прямая запись в регистры конфигурации настройки периферийных устройств невозможна, если установлен бит IOLOCK в регистре OSCCON (его функция еще связана с регистром конфигурации), это сделано для блокировки случайной их перенастройки в процессе работы. Если в регистре конфигурации предусмотрено возможность снятия этого бита после установки, то необходимо будет выполнить последовательность разблокирования.  Если попробовать выполнить запись в регистр конфигурации периферийных устройств с установленным битом IOLOCK, то такая запись будет выполнена, но значение регистров не измениться.

Сначала по порядку, за подключение к ножке 26 отвечает регистр RPOR7 в нем в старшем байте размещены биты управления функций RP15 (см. таблица 1-2)

Таблица 1-2.

Функция Номер ножки Регистр который отвечает за настройку выходных сигналов для указанной ножки контроллера Регистр выхода
RP0 4 RPOR0 RPOR0bits.RP0R
RP1 5 RPOR0 RPOR0bits.RP1R
RP2 6 RPOR1 RPOR1bits.RP2R
RP3 7 RPOR1 RPOR1bits.RP3R
RP4 11 RPOR2 RPOR2bits.RP4R
RP5 14 RPOR2 RPOR2bits.RP5R
RP6 15 RPOR3 RPOR3bits.RP6R
RP7 16 RPOR3 RPOR3bits.RP7R
RP8 17 RPOR4 RPOR4bits.RP8R
RP9 18 RPOR4 RPOR4bits.RP9R
RP10 21 RPOR5 RPOR5bits.RP10R
RP11 22 RPOR5 RPOR5bits.RP11R
RP12 23 RPOR6 RPOR6bits.RP12R
RP13 24 RPOR6 RPOR6bits.RP13R
RP14 25 RPOR7 RPOR7bits.RP14R
RP15 26 RPOR7 RPOR7bits.RP15R

Для настройки выхода Output Compare 1, необходимо записать в соответствующий регистр выхода, который связан с нужной нам ножкой контроллера значение 18 (см. таблицу 10-3).

Таблица 10-3.

Функция Номер функции Название выхода
NULL 0 NULL
C1OUT 1 Comparator 1 Output
C2OUT 2 Comparator 2 Output
U1TX 3 UART1 Transmit
U1RTS 4 UART1 Request To Send
U2TX 5 UART2 Transmit
U2RTS 6 UART2 Request To Send
SDO1 7 SPI1 Data Output
SCK1OUT 8 SPI1 Clock Output
SS1OUT 9 SPI1 Slave Select Output
SDO2 10 SPI2 Data Output
SCK2OUT 11 SPI2 Clock Output
SS2OUT 12 SPI2 Slave Select Output
OC1 18 Output Compare 1
OC2 19 Output Compare 2
OC3 20 Output Compare 3
OC4 21 Output Compare 4
OC5 22 Output Compare 5

Тетерь если мы не устанавливали бит IOLOCK в регистре OSCCON, то настроить выход нам необходимо будет выполнить команду:

Если мы хотим это сделать когда бит IOLOCK уже установлен, и если такая возможность разрешена, сброс бита IOLOCK после установки в регистре конфигурации. При инициализации регистра конфигурации, должна быть сделана такая запись:

То с начала надо сбросить бит IOLOCK, для чего надо выполнить последовательность разблокирования:

а затем выполнить команду

И если в дальнейшем надо заблокировать изменение настроек, то надо установить бит IOLOCK. Для этого выполните:

После того когда подключили наш модуль к ножке контроллера настроим его работу.

Модуль работает только в паре с таймером, который задает все временные параметры. Таймер, с которым может работать наш модуль, может быть Timer2 или Timer3. Один из них может быть выбран битом OCTSEL в регистре (OCxCON <3>).

Для настройки модуля Output Compare 1 предназначены три регистра:

  1. OC1CON – регистр управления.
  2. OC1R – регистр сравнения 1.
  3. OC1RS – регистр сравнения 2.

Регистр управление OC1CON – описание битов:

bit 13 – OCSIDL: отвечает за работу модуля в Idle режиме, если он установлен (1) модуль будет выключен в режиме ожидания, если сброшен (0), то будут продолжать работать в режиме ожидания.

bit 4 – OCFLT: бит состояния режима ШИМ (bit 2-0=111), актуален если модуль работает в режиме ШИМ. Если установлен (1) – произошла неисправность, если (0) – нет неисправности.

bit 3 – OCTSEL: бит выбора таймера для совместной работы, 1 = Timer3, 0 = Timer2.

bit 2-0 – выбор режима работы модуля.

111 = режим PWM, контроль неисправности включен
110 = режим PWM, контроль неисправности выключен
101 = Инициализация выходного контакта модуля низким уровнем, генерация непрерывных импульсов.
100 = Инициализация выходного контакта модуля низким уровнем, генерация одиночного импульса.
011 = Режим сравнения и переключение выхода в противоположное состояние
010 = Инициализация выходного контакта модуля высоким уровнем, после сравнения перевести в низкий уровень.
001 = Инициализация выходного контакта модуля низким уровнем, после сравнения перевести в высокий уровень.
000 = модуль отключен.

Для нашего варианта работы выберем работу с таймером 2 и настроем режим (101) – Инициализация выходного контакта модуля низким уровнем, генерация непрерывных импульсов. Настройка будет выглядеть следующим образом:

Настройка таймера:

pic24-08

При таких настройках мы будем иметь выходную частоту 62,5 кГц, теперь приведем формулу для расчета требуемой частоты. Тактовая частота задается используемым таймером. Частота на выходе таймера определяется настройкой предделителя и значением регистра периода PR.

Fout = Ftakt/2/предделитель/значение PR. Наша тактовая 32 мГц. Предделитель 1:1, значение PR = 255.

Fout = 32 000 000 / 2 / 1 / 255 = 62745 Гц.


Проект для загрузки.

[box title=”Файлы для загрузки” color=”#521BDE”]

[/box]


Использование прерываний для управления процессами в PIC24


Во второй главе для управления светодиодами применялись макросы задержки, они “типа” стопорили работу процессора на пол секунды, после чего, контроллер выполнял необходимые команды по переключению светодиодов  и опять занимался тем что ожидал. в реальной жизни это непозволительная роскошь. Если контроллеру необходимо выполнять обработку информации, то наши задержки будут только стопорить его основную работу.

Для решение этой проблемы можно использовать прерывания, которые формирует аппаратный таймер и который работает независимо от функционирования центрального процессора. Одно из решений задачи, контроллер занимается основной задачей и циклически проверяет флаг который устанавливается когда выполняется прерывание от таймера. Если флаг установлен выполняется процедура “мигания” светодиодами  Если нет выполняется основная задача.

Основные различия от предыдущего проекта это при настройки таймера включение прерывания от таймера TMR1.

Создание функции прерывания от таймера TMR1.

А сам главный цикл программы теперь будет выглядеть так:

Расчет периода прерываний для таймера TMR1 (смотри в описании по работе с таймером).


Загрузка проекта

Значок

Использование прерываний для управления процессами в PIC24 45.72 KB 720 downloads

Использование прерываний для управления процессами...


Это может быть интересно

  • USB K-L-line адаптерUSB K-L-line адаптер
    USB K-L-line адаптер предназначен для связи персонального компьютера с диагностической шиной автомобиля – интерфейс ISO-9141. Этот проект предназначен для сборки недорого устройства с использованием специально для этой цели разработанной печатной …
  • MCC PIC24 – модуль OUTPUT COMPARE – режиме ШИМMCC PIC24 – модуль OUTPUT COMPARE – режиме ШИМ
    Во многих системах управления, для формирования управляющих сигналов требуется модуль ШИМ, он позволяет не только формировать импульсы заданной длительности, но и с применением обычного RC фильтра строить простые ЦАП. MCC …
  • Простой оптический сенсор приближенияПростой оптический сенсор приближения
    Оптический сенсор, назначение оптический концевик, для автоматики, бесконтактный выключатель с функцией автоматического отключения...
  • Moving average – скользящее среднееMoving average – скользящее среднее
    Скользящая средняя, скользящее среднее (англ. moving average, MA) — общее название для семейства функций, значения которых в каждой точке определения равны среднему значению исходной функции за предыдущий период. Скользящие средние обычно используются с данными временных рядов для сглаживания краткосрочных колебаний …
  • Проект с использованием MCC часть 09Проект с использованием MCC часть 09
      Эта часть будет посвящена созданию практического проекта управления освещение. Тех задание: Два выхода управления ШИМ – светодиодным освещением. Две кнопки управления, каждая кнопка управляет, своим каналом, логика самая простая, нажимаем …
  • Униполярный шаговый двигательУниполярный шаговый двигатель
        В приводах различных устройств часто применяются шаговые двигатели, Шаговый двигатели различают двух типов униполярные – когда обмотки коммутируются током текущим только в одну сторону, например при помощи обычных …
  • LED модуль P10C4V12LED модуль P10C4V12
    LED панели на обычных регистрах типа 74HC595. Они выпускаются как монохромные так двух и полно цветные, особенность, что они предназначены для текстовой информации и имеют один уровень яркости. Общую яркость панелей легко …
  • REFERENCE CLOCK OUTPUT MODULEREFERENCE CLOCK OUTPUT MODULE
    REFERENCE CLOCK OUTPUT MODULE Модуль формирования опорного тактового сигнала Модуль опорного тактового сигнала обеспечивает возможность посылать сигнал синхронизации на тактовый опорный выходной контакт или контакты (CLKR) в зависимости от конфигурации выводов …
  • Самый простой диммер для светодиодного освещенияСамый простой диммер для светодиодного освещения
    Светодиоды все больше входят в нашу жизнь как источники освещения и как само собой разумеющееся, это вопрос регулировки яркости. Существует множество схемных решений, но в нашем варианте мы приведем несколько …
  • Система AT команд версии V2.0 для ESP8266 и ESP32Система AT команд версии V2.0 для ESP8266 и ESP32
    Появление нового модуля на базе ESP32 заставило систематизировать систему AT команд, а так же систему обновления и для модулей на базе ESP8266. Начиная с версии v2.0 в ESP8266 внедряется прошивка …


Формат данных XC16


Для дальнейшей работы, понадобиться понятие переменных. Кратко чтобы не напрягать – название и размер данных:

Объявление Бит  Диапазон чисел Примечание 
Целочисленные типы
char 8 -128 … 127 со знаком
signed char 8 -128 … 127 со знаком
unsigned char 8 0 … 255 без знака
short 16 -32768 … 32767  со знаком
signed short 16 -32768 … 32767  со знаком
unsigned short 16 0 … 65535  без знака
int 16 -32768 … 32767 со знаком
signed int 16 -32768 … 32767 со знаком
unsigned int 16 0 … 65535 без знака
long 32 -2147483648 … 2147438647 со знаком
signed long 32 -2147483648 … 2147438647 со знаком
unsigned long 32 0 … 4294867295 без знака
long long**, signed long long** 64 -9223372036854775808…9223372036854775807 со знаком
unsigned long long** 64 0…18 446 744 073 709 551 615 без знака
   
Для арифметики с плавающей запятой  
float 32  1.175494e-38 … 3.40282346e+38
double* 32 1.175494e-38 … 3.40282346e+38
long double 64 2.22507385e-308 … 1.79769313e+308

* * ANSI-89 extension
* double is equivalent to long double if -fno-short-double is used.


Исследуем формирования задержки


Сама задержка или ожидание чего-то не самая популярная вещь в программировании, ведь она просто тратит машинное время в пустую. Но как ни крути, время от времени её необходимо использовать. Как видим одним из удобных вариантов формирования задержки нам предоставляет стандартная библиотека libpic30.h в виде трех макросов:

__delay32 – формирование задержки в тактах процессорного времени.

пример: __delay32(NNN); где NNN – unsigned long циклов, минимальное число 12 циклов, если значение меньше 12, то все равно будет задержка в 12 циклов (12-4294967295).

__delay_ms – формирование задержки в миллисекундах.

пример: __delay_ms(NNN); где NNN – unsigned int – миллисекунд (0-65536).

__delay_us – формирование задержки в микросекундах.

пример: __delay_us(NNN); где NNN – unsigned int – микросекунд (0-65536).

Для макросов __delay_ms и __delay_us необходимо сделать определение и указать рабочую тактовую частоту контроллера, сделать это надо до “вставки” библиотеки (типа так):

Существуют разные возможности формирования задержек при помощи встроенных таймеров, но как показала практика, ни в эффективности,  ни в практичности они уступают макросам. Во первых расходуется больше памяти, во вторых задействован сам таймер, который может использоваться для других целей.

Но для расширения кругозора, приведем пример, решения нашей задачи из прошлой главы с миганием светодиодов.

Для начала необходимо включить в работу сам таймер (работу самого таймера будет рассмотрено позже):

 После такого включения таймера можно выполнить формирования задержки следующим образом:

А сам главный цикл из прошлой главы может быть иметь такой вид:

Всем желающим можно попробовать этот вариант. Хотя как я уже говорил, он не эффективен.



Это может быть интересно


  • Стабилизатор тока на SN3350, часть 2Стабилизатор тока на SN3350, часть 2
    Если вам необходимо разработать устройство с применением мощных светодиодов, то никак не обойтись без применения стабилизатора тока. На настоящий момент стабилизаторы тока являются самым эффективным механизмом, для питания светодиода в течение всего его цикла …
  • Altium Designer – подготовка документации для производства и сборки печатных платAltium Designer – подготовка документации для производства и сборки печатных плат
    В процессе освоения Altium Designer много возникает вопросов по подготовке документации для производства плат, а также для её сборки. Altium Designer позволяет сделать все требуемые документы, хотя скажем откровенно, для …
  • Емкостной сенсорЕмкостной сенсор
    Изучаем изготовление емкостных сенсоров на PIC-микроконтроллере. Конструкция емкостных сенсоров имеет вид: Емкостные сенсоры строятся по схеме высокочастотного генератора, сам принцип основан на измерение частоты этого генератора. Частота зависит от емкости …
  • AD9833 – Programmable Waveform GeneratorAD9833 – Programmable Waveform Generator
    Простой генератор звуковых частот на AD9833. Для тестирования БПФ в светомузыке мне нужен был генератор звуковых частот. Я  использовал советский Г3-112, но он себя давно изжил.  Все думал купить чёто такое …
  • NeoPixel LED и PIC18NeoPixel LED и PIC18
      Еще раз об управлении светодиодами на драйвере WS2812 и ему подобных. Как известно эти светики управляются по однопроводной шине. Основная особенность, что программно можно описать передачу данных, но это …
  • Проект с использованием MCC часть 06Проект с использованием MCC часть 06
    Изменим схему следующим образом добавим две тактовые кнопки BT1 и BT2. Теперь переключимся на конфигурацию выводов, для этого сделаем двойной клик в окне Ресурсы проекта на Pin Module. В окне Pin …
  • JDY-62A Audio bluetooth moduleJDY-62A Audio bluetooth module
    Простой модуль для простого аудио блютуса. Встроенные подсказки на английском языке. Модуль включён, режим муте – после подачи питания. Контроль разряда батареи предупреждение что батарея разряжена и необходима подзарядка. При …
  • MPLAB® Harmony – или как это просто! Часть 4.MPLAB® Harmony – или как это просто! Часть 4.
    Часть четвертая – это может показаться немного сложно. Структура проекта. Для облегчения конфигурирования проекты MPLAB Harmony обычно структурированы таким образом, чтобы изолировать код, необходимый для настройки «системы», от кода библиотеки …
  • ESP8266 применение в проектахESP8266 применение в проектах
    (Актуально только для версий прошивки 1.хх) ESP8266 показала себя как надежное и безотказное устройство для обмена данными с применением WIFI. Я использую ESP8266 исключительно через UART, с применением AT команд. Все …
  • DS18B20 – удаленный контроль температурыDS18B20 – удаленный контроль температуры
    Плата в корпусе Датчики температуры DS18B20 Схема подключения Вывод данных на ПК Установка дополнительных резисторов Назначение выводов This jQuery slider was created with the free EasyRotator for WordPress plugin from …


Первая программа на PIC24


При написании первой программы всегда начинает вопрос с чего начать. Пропустим весь процесс установки среды программирования так ка считаем, что это пройденный этап. Программировать будем учиться на языке С XC16. Я считаю для начинающих, это самый простой вариант для обучения, так как ассемблер для 16 разрядных более сложен для понимания, чем для 8 разрядных PIC-контроллеров.

Первое, что необходимо, это какие необходимы начальные строки, чтобы компилятор понял, что мы от него хотим. Первая строка:

А хотим мы от него, что бы он выбрал из настроек среды MPLAB с каким контроллером мы работаем.

Дальше, для уменьшения наших мук, будем использовать библиотеку libpic30. Поэтому включим следующие две строчки, в первой – разъясняем компилятору какая у нас тактовая частота. Вторая, что будем использовать библиотеку.

Определение тактовой частоты полезно настройки для макросов __delay_ms() и __delay_us().

Теперь надо настроить регистр конфигурации контроллера. Каждая строка имеет комментарий описывающий назначение. В двух словах – используем внутренний генератор с умножителем, запустим сторожевой, таймер. Для чего? Чтобы научиться с первых шагов с ним работать!

Сама первая программа это показать для самого себя, что контроллер начал работать, а для этого мы будем использовать индикацию на наших светодиодах подключенных портам (см. схему).

Программа, практически всегда, должна начинаться с настройки основного генератора, после этого необходимо перейти к настройке портов ввода вывода, а после можно перейти к этого основному циклу, в котором будет “вечно” работать наше устройство.

Настройка тактового генератора:

По регистру OSCCON хотелось бы добавить, пока мы не трогаем флаг блокировки IOLOCK, он будет вести себя как обычный регистр, но если его установить, то в зависимости от условий в регистре состояния, мы или не сможем его в последствии программе изменить или нам придется выполнять последовательность разблокирование для того чтобы, в нем что-то изменить.

Настройка портов:

И сам главный цикл программы, в нем мы используем банальную задержку для управления анимации светодиодов.

 Первая программа – мигание светодиода, для встроенных систем, это как “Привет Мир”. Светодиод мигает – мир радуется!


Демонстрационное видео

 


Проект для загрузки

Значок

Первая программа на PIC24 41.56 KB 1043 downloads

Первая программа на PIC24 ...


Это может быть интересно

  • LED драйвер TM1639LED драйвер TM1639
    TМ1639 позволяет работать на матрицу 8*8 или 8 семисегметных индикаторов. Может работать как на индикаторы с общим катодом, но и есть возможность подключать общим анодом. Для управления драйвером используется трех …
  • Инфракрасный датчик движения, PIR-sensorИнфракрасный датчик движения, PIR-sensor
    Домашняя автоматика предполагает наличие датчиков движения, которые способны контролировать движения человека. Самым простым и доступным устройством позволяющие контролировать изменения ИК-излучения, это ПИР-сенсоры. На текущий момент доступны не дорогие модели D203B, D204B, D205B. Все они позволяют …
  • Мультимедийная сеть – AVC-LAN TOYOTAМультимедийная сеть – AVC-LAN TOYOTA
    AVC LAN – протокол обмена данными мультимедийных систем автомобиля. Кодирование данных. При кодировании различаться три типа данных : преамбула – её назначение, это сообщение устройствам на шине, что начинается передача данных. бит 0 …
  • OLED RET012864E/REX012864JOLED RET012864E/REX012864J
    RET012864E/REX012864J ОЛЕД индикатор производитель Raystar-Optronics приобретался в http://www.microchip.ua/ к сожалению никакой информации на сайте поставщика нет. Поэтому решил работу с этой версией индикатора на драйвере SSD1305 предоставить на своем сайте. Так как есть ошибки …
  • WiFi ESP8266 – AT команды связанные с функцией TCP/IP (v.1.6.1)WiFi ESP8266 – AT команды связанные с функцией TCP/IP (v.1.6.1)
    AT команды связанные с функцией TCP/IP В этом разделе описаны команды которые позволяют устанавливать соединения между серверами и клиентами в сети. Приведено описание команд и примеры их выполнения. Функции TCP/IP …
  • Часы + Календарь + Термометр + …Часы + Календарь + Термометр + …
    Часы + Календарь + Термометр + Индикатор влажности + Секундомер + Дистанционное управление на ИК лучах (пульты на RC-5 протоколе) + Автоматическая регулировка яркости + Возможность вывода данных через USB, на плате ILLISSI_B4_primum …
  • Проект с использованием MCC часть 07Проект с использованием MCC часть 07
    Модуль PWM – широтно импульсная модуляция (ШИМ). ПИК контроллеры часто на борту имеют модули ШИМ. На их основе строятся многие узлы управления электро приводами. В нашем варианте мы будем его …
  • CCP модуль для декодирования ИК-кодов пультов ДУCCP модуль для декодирования ИК-кодов пультов ДУ
    Множество изготовителей для своих пультов дистанционного управления на ИК лучах используют принцип широтно-импульсной модуляции. В таких кодах бит единицы представляется импульсом большой длительности, а ноль импульсом короткой длительности. Внешний вид …
  • Униполярный шаговый двигательУниполярный шаговый двигатель
        В приводах различных устройств часто применяются шаговые двигатели, Шаговый двигатели различают двух типов униполярные – когда обмотки коммутируются током текущим только в одну сторону, например при помощи обычных …
  • JDY-62A Audio bluetooth moduleJDY-62A Audio bluetooth module
    Простой модуль для простого аудио блютуса. Встроенные подсказки на английском языке. Модуль включён, режим муте – после подачи питания. Контроль разряда батареи предупреждение что батарея разряжена и необходима подзарядка. При …


Как запитать и подключить к программатору PIC24


Для обучения будем использовать PIC24FJ64GA002. Его особенность – низкая цена, 28 выводов, диапазон питания 2,0-3,6 вольта.  Для питания будем использовать источник 3,3 вольта. А так как ядро контроллера работает при напряжении 2,5 вольта, мы должны оставить включенным внутренний регулятор напряжения, для этого к выводу Vcap/Vddcore подключить керамический конденсатор 10,0 мкФ. А вывод DISVREG – подключить к Vss (к общему).

Для подключения к программатору у контроллера есть три альтернативных варианта подключения.

Первый вариант подключения.

pic24-02

Второй вариант подключения.

pic24-03

Третий вариант и первая схема для обучения по работе с PIC24.

pic24-04

 Для индикации мы подключим к портам RA0, RA1, RB0, RB1 светодиоды для контроля работы программы. Для питания можно использовать любой 3,3 вольтовый стабилизатор. Для макетирования была применена плата ILLISSI-M4B01

Макетная плата для 28 ногих PIC контроллеров

Макетная плата в сборе для тестирования и обучения.

 pic24-05 pic24-06

 Полная схема, со стабилизатором.

pic24-07

 CON1 предназначен для подключения к программатору, CON2 для подачи питания на микроконтроллер.

Если схема собрана правильно, надо переходить к написанию первой программы.


Изучаем PIC24, компилятор XC16


С чего начать и с чего приступить к изучению 16 разрядных PIC-микроконтроллеров.

Первое, это надо разобраться как установить среду программирования и сам компилятор Си, в нашем варианте это MPLAB IDE v8.89 и MPLAB XC16 v1.11.

Второе, приобрести PIC-контроллер, я использовал PIC24FJ64GA002.

Третье, макетную плату и всякую россыпуху и не только.


pic24-05

Чего не стоит искать здесь.

Здесь не стоит искать изучение языка Си, здесь только практические советы, по необходимости, все можно конечно объяснить и помочь понять, для этого задавайте вопросы на форуме http://musiccolor.d-lan.dp.ua/.


Статьи:

  1. Как подключить питание и подключение для внутрисхемного программирования PIC24.
  2. Настройка тактового генератора.
  3. Первая программа на PIC24.
  4. Исследуем формирования задержки.
  5. Объявление переменных – Формат данных.
  6. Использование прерываний для управления процессами.
  7. Output Compare – формирование импульсов.
  8. I2C™ – INTER-INTEGRATED CIRCUIT и PIC24.
  9. 10-бит, высокоскоростной, аналого-цифровой преобразователь, часть 1.
  10. 10-бит, высокоскоростной, аналого-цифровой преобразователь, часть 2.
  11. Измерение частоты.
  12. PIC24 и работа с SD/MMC картами памяти.
  13. Часы реального времени DS1340.
  14. Энкодер и его применение.
  15. Контроллер DMA (Direct Memory Access).
  16. Визуализация данных.
  17. Многокнопочная клавиатура.
  18. Внешний АЦП ADS1230 и PIC24FJ64GA004.
  19. … продолжение следует …