Views: 3474
Солнечные коллекторы для отопления в Европе используют в более 50% от общего количества установленных гелиосистем. Однако следует понимать, что гелиосистемы предназначены лишь для поддержки отопления и экономии затрат на основную систему отопления.
Основная причина для разработки и установки в наше время – это непомерная цена на классические энергоносители.
Описание конструкции собранной гелиосистемы
Основные моменты, повлиявшие на конструкцию:
- – приоритетным режимом является отопление комнаты
- – проживание в доме с мая по октябрь
- – автономность системы
- – все потребители электроэнергии – низковольтные
- – полное осознание того, что срок окупаемости проекта равен бесконечности
Основное отличие от подавляющего большинства схем – возможность подачи теплоносителя напрямую в батарею. Имеющиеся в интернете схемы всегда предполагают промежуточный накопитель тепла, и пока он не прогреется, отопления не будет. Эти схемы возможны только в случае постоянного проживания и поддержания накопителя в теплом состоянии дополнительным ТЭНом или от котла.
В представленной системе имеется 3 переключаемых контура циркуляции теплоносителя, и соответственно 3 режима работы:
- – дневное отопление (контур солнечный коллектор – батарея или накопитель – батарея), когда есть солнце, накопитель горячий, а в комнате холодно;
- – накопление тепла (контур солнечный коллектор – накопитель), когда солнце светит, а в комнате жарко и отопление не нужно;
- – ночное отопление (контур накопитель – батарея), когда луна не греет, накопитель горячий, а в комнате опять холодно )))
Дополнительно можно выделить «зимний» режим, когда вода в накопителе отсутствует. По сути, это есть режим дневного отопления, но работает только контур солнечный коллектор – батарея.
Кроме того, через накопитель пропущен проточный змеевик, не связанный с системой отопления, подающий воду от водопровода к электрическому бойлеру ГВС. Это значительно уменьшает время работы бойлера на нагрев воды и, соответственно, расход электроэнергии.
В управлении схемой задействованы все 4 канала терморегулятора.
На первом канале установлен режим дифтермометра коллектор-накопитель. На втором «уставка» по температуре в коллекторе. Из них сделан логический элемент «И», то есть первая группа клапанов и насос включаются при срабатывании обоих каналов.
Вторая связка чуть сложнее. В нее введен логический элемент «И-ИЛИ», связанный с 4 каналом логическим «И» (см. схему). Это позволяет не перенастраивать контроллер на работу в «зимнем» режиме.
Поскольку насос в схеме один, а каналов управления два, для исключения взаимного влияния питание насоса организовано через два встречных диода.
Электрическая схема подключения нагрузок к регулятору представлена ниже.
Оборудование и материалы:
- Вакуумный солнечный коллектор Atmosfera CBK Nano 20
- Клапан нормально-закрытый ½” – 2 шт
- Клапан нормально-открытый ½” (см. текст ниже) – 2 шт
- Насос
- – Радиатор отопления 10 секций алюминиевый
- – Труба нержавеющая гофрированная – 60 м (из них ~35 м ушло на змеевики)
- – Расширительный бачок закрытого типа, объем 8 л
- – Фитинги, сгоны, соединители, краны шаровые, воздушник
- – Термометр-манометр совмещенный
- – Бочка 216 л металлическая
- – Полоса оцинкованная (для крепления змеевиков в бочке)
- – Теплоизоляция
- – Теплоноситель (этиленгликоль) – 15 л
- – Контроллер на основе дифференциального терморегулятора
- – Блок питания, датчики, провода
- – Контроллер заряда АКБ
- – АКБ 75 А*ч (б/у от автомобиля)
- – Солнечные панели 100 Вт 12 В – 2 шт
- – Крепеж, изолента, термоусадка, термопаста, ФУМ, стяжки
Для заполнения системы теплоносителем использовался насос повышения давления от системы обратного осмоса.
Нормально-открытые клапаны по факту потребляли 23 Вт каждый и грелись до +80 градусов, за что им были перемотаны катушки. Сейчас потребление каждого 12 Вт и температура катушки +52 градуса при +30 окружающего воздуха. Новая катушка – 170 м провода ПТЭВ-0,4.
Можно найти другие клапаны, но у них пластиковый корпус. Так что решение о замене – на усмотрение меняющего.
На момент написания статьи система проработала 2 недели, вторая половина августа. Геолокация – север московской области. Коллектор ориентирован строго на юг.
По факту тепловая мощность коллектора с учетом неизбежных потерь в это время оказалась равной 1,17 кВт. При заявленной пиковой мощности 1,24 кВт вполне достойный результат.
В ближайших планах – установка солнечных панелей для полной автономности системы, с возможностью автоматического перехода на питание от сети, если АКБ разряжена. Контроллер заряда и АКБ уже установлены.
Автору терморегулятора в качестве идей могу предложить рассмотреть возможность управления трехходовым краном (он заменяет пару НЗ и НО клапанов) с контролем по крайним положениям (но это скорее уже обвязка, а не программирование) и введение в режим дифтермометра уставки.
Фотографии процесса монтажа системы:
А вообще, огромное спасибо Геннадию за труд и терпение! (за написание ПО для регулятора, если более конкретно от Catcatcat)
С уважением, Дмитрий.
Для управления гелиосистемой Дмитрий применил ch-4050 — дифференциальный терморегулятор. Регулятор был изготовлен на своей плате.
Файлы для загрузки
Система отопления на солнечных коллекторах от Дмитрия 52.21 KB 165 downloads
Логическая схема установки в формате pdf ...Это может быть интересно
Бегущие огни на WS2812BViews: 5054 В настоящее время большой популярностью стали пользоваться светодиоды со встроенным драйвером WS2812B. Текущий проект предназначен показать возможность использования и управления этими светодиодами. Это и проект и исследование по …
Контроллер управления светодиодным освещением с дистанционным управлениемViews: 2077 Все активнее светодиоды входят в нашу жизнь. Всё эффективнее становится светодиодное освещение. Всё ниже опускаются цены. Всё больше появляется возможностей получения сочных цветов, простоты в управлении. Всё чаще …
Четырех канальный терморегулятор ch-4000Views: 3432 Четыре независимых канала регулирования температуры, одновременно можно подключить 16 датчиков температуры DS18B20 с удалением до трехсот метров. Можно для регулировки выбрать любой датчик, подключенный к устройству. Каждый канал может работать …
I2C MODULE – PIC18F25K42 Device ID Revision = A001Views: 1206 I2C MODULE Обход ошибок в версии I2C MODULE – PIC18F25K42 Device ID Revision = A001 В Серии K42 применен совершенно новый модуль шины I2C, который позволяет поддерживать все …
Altium Designer my Libraries, Project templates, System settings by Catcatcat. V26.0Views: 287 Altium Designer my Libraries, Project templates, System settings by Catcatcat. V26.0 Here I want to share how I configure Altium Designer and how I use the DXPPreferences1.DXPPrf …
Audio-bluetooth modules F-6188 (BK8000L)Views: 2497Следующий модуль на чипе BK8000L. Заводское обозначение F-6188 также основным производителем не выпускается и отдан на тиражирование. с нижней стороны имеет маркировку В этом варианте мне попалась вроде полноценная …
MPLAB® Harmony – или как это просто! Часть 2.Views: 2964 Часть вторая – Первая программа на PIC32. Музыкальная тема к статье, слушаем: Для начала изучения PIC32 надо иметь или демоплату или самому её изготовить имея микроконтроллер. Начнем из …
Проект с использованием MCC часть 05Views: 2220 Эту часть назовем так как избавься от delay, там где а это реально не надо. Для это нам потребуется научиться использовать прерывания и работать с таймерами. Что такое …
LATINO – открытый проект ch-светомузыкиViews: 1763 Проект построенный на некоторых принципах ch-светомузыка. Проект ознакомительный предназначен, для самостоятельного построения простого и эффективного светосинтезатора. Вывод осуществляется на ВОУ собранной на драйверах HL1606. Для этого была …
TDA7294 part 1Views: 504 TDA7294 має унікальні дані для створення підсилювачів звукової частоти HI-FI класу. Варіант застосування є конфігурація BRIDGE (мостова схема включення), де використовуються два TDA7294, як показано на схематичній діаграмі …





















Доброе утро.
Очень интересная статья вышла и актуально, как раз под зиму.
Благодарю.