Views: 1832
Страница в pdf
Ультразвуковой метод измерения расстояния является одним из самых распространенных. Ультразвуковой модуль HC-SR04 имеет 4 вывода.
Vcc – напряжение питания 5 вольт
Trig – вход запускающих импульсов для процесса измерения
Echo – выход импульса длительность которого пропорциональна расстоянию.
GND – общий провод питания.
Для демо примера будем использовать плату ILLISSI-4B-03-primum и плату индикации ILLISSI-4С-01-secundo.
В качестве управления будем использовать вывод RC2, для измерения длительности будем использовать вход T1G (RB5). Подключение:
Для измерения частоты используется таймер 1 и его Gate-модуль управления.
Gate-модуль управления появился в новых Pic-контроллерах серии PIC16F19xx. Теперь элементарно легко построить измерителей длительности и частоты сигнала, которые аппаратно, самостоятельно выполняют эти функции не отвлекая микроконтроллер от основной задачи.
Для измерения сигнала настроим таймер для измерение длительности импульсов. На вход будем подавать тактовую частоту 1 мГц. Что соответствует 1 мкс длительности. Измеряемый импульс (эхо от модуля HC-SR04) будем подавать на вход T1G.
T1CON=0b00110001; // настройка таймера T1CON
// |||||| |
// |||||| +-- TMR1ON таймер включить
// |||||+---- T1SYNC синхронизация отключена
// ||||+----- T1OSCEN генератор отключен
// ||++------ T1CKPS настройка предделителя 00 - 1:1
// ++-------- TMR1CS выбор тактовой частоты FOSC
T1GCON=0b11000100; // регистр ворот
// ||||||++-- T1GSS<1:0>: выбор входа для модуля ворот 00 - TGP1
// ||||||+--- T1GVAL: Флаг
// |||||+---- T1GSPM: выбор синхронизация от модуля единичного импульса
// ||||+----- T1GGO/DONE: запуск одиночного измерения
// |||+------ T1GSPM: управление триггером режима (отключен)
// ||+------- T1GTM: управление триггером режима (отключен)
// |+-------- T1GPOL: таймер 1 работает когда уровень высокий
// +--------- TMR1GE: регистр ворот включен и управляет таймером 1
Вариант настройки таймера выполнен с учетом, что тактовая частота контроллера 32 мГц. (хотя с успехом можно использовать и более низкие тактовые частоты от 1 мГц.).
Процесс измерения начинается с инициализации таймера и сброса флага переполнения таймера.
TMR1IF=0; // сброс флага переполнения TMR1H=0; // сброс регистров таймер TMR1L=0; //
Особенности работы модуля не соответствующие описанию.
Флаг переполнения будет использоваться для определения ситуации когда модуль HC-SR04 не может получить эхо. На практике было определено, что работа модуля немного отличается от описания, которое было найдено в инете. Дело в том что при отсутствия эха, модуль формирует непрерывный импульс.
Длительность импульса ответа непрерывна и прерывается только в момент формирования импульса запуска измерения. Вид на ответ от модуля в ситуации отсутствия эха.
Если эхо присутствует, то мы будем видеть следующие осциллограммы работы с модулем.
В начале формируется (на входе Trig) импульс запуска длительностью не менее 10 мкс. После этого модуль через 0,5 мс, начинает формировать ответ импульсом длительностью пропорциональной расстоянию. На нижнем рисунке, пример, формирования импульса (это расстояние от поверхности моего стола до потолка и составляет 1,74 м).
Длительность 10114 мкс. Что составляет 10114/58=174 см.
После инициализации регистров таймера и очистки флага переполнения, формируем импульс запуска длительностью не менее 10 мкс.
// формирование импульса запуска LATC2=1; __delay_us (10); LATC2=0;
После этого включаем таймер и запускаем режим измерения одиночного импульса.
TMR1ON=1; // включение таймера T1GGO=1; // запуск одиночного измерения
Далее ожидаем окончания измерения, при этот контролируем, флаг переполнения таймера и если такое “неподобство” наступит, будем подсчитывать количество таких измерений. Это необходимо, чтобы сделать индикацию отсутствия эха, приемлемой для восприятия.
while(T1GGO)// ожидания окончания измерения
{
CLRWDT(); // сброс сторожевого таймера
if(TMR1IF)
{
T1GGO=0;// останов измерения при переполнении таймера
ERROR++;// подсчет количества измерений когда отсутствует эхо
}
}
После выполнения измерения, останавливаем таймер:
TMR1ON=0;//остановить таймер
Далее по результатам измерения выводим на индикатор измеренное расстояние или сообщение, что нет эха, т.е. нет препятствий в зоне чувствительности модуля.
if(!TMR1IF)
{
// чтение регистров таймера
pwm_reg=TMR1L;
pwm_reg += TMR1H << 8;
// ФИЛЬТР устранения дрожания индикации при смене показаний "накапливающий интегратор"
if(pwm_reg^pwm_regp && porog)porog--;
else
{
pwm_regp=pwm_reg;
porog=2;
}
// преобразование в сантиметры длины
// bin_dec (pwm_reg/58,2); // индикации "не отфильтрованного" сигнала
bin_dec (pwm_regp/58,2);// индикация после фильтра
ERROR=0;
// индикация
indic (dmil,miln,stys,dtys,tysc,sotn,dest,edin,6); // вывод значения на дисплей
}
else
{
// индикация отсутствия эха
if(ERROR>4)indic (cM,cn,co,0,cE,ch,co,cM,0); // вывод значения на дисплей
}
Примечание: для устранения “дрожания” показаний применим «накапливающий интегратор». За это отвечают строки:
// ФИЛЬТР устранения дрожания индикации при смене показаний "накапливающий интегратор"
if(pwm_reg^pwm_regp && porog)porog--;
else
{
pwm_regp=pwm_reg;
porog=2;
}
И в конце, сформируем задержку, которая необходима для формирования периода подачи импульсов изменения не менее чем через 50 мс.
__delay_ms (50);// формирования периода запуска сенсора
Выводы: Датчик обладаем широким углом захвата, поэтому его рекомендуется устанавливать над плоскими поверхностями на расстоянии не менее 10 мм. В связи с этим он захватывает отраженные импульсы от предметов которые находятся от его оси до ±15 грд., что необходимо учитывать при конструировании устройств. Реальная чувствительность не более 3 метров. На большие расстояния не хватает или мощности формируемого импульса или чувствительности приемника. Мое мнение – я считаю, что для таких модулей вывод измеряемого параметра в виде ширины импульса не практично, так-как получается два цикла измерения, первое это измерение делает модуль, второе контроллер. Для таких устройств желательно, что-бы все эти преобразования были выполнены в самом модуле. А на выходе формировать уже значение расстояния в виде готовых цифровых данных. А получать данные из модуля, удобно через последовательные интерфейсы I2C, SPI или UART.
Фото демо проекта
Видео демо проекта
__
Проект
Это может быть интересно
Проблемы классической светомузыкиViews: 2189 Светомузыка – что это такое? Определение: Светомузыка (жаргонное: цветомузыка) — вид искусства, основанный на способности человека ассоциировать звуковые ощущения со световыми восприятиями. Такое явление в неврологии получило название …
LM317 и светодиодыViews: 8176 LM317 и светодиоды статья с переработанная с сайта http://invent-systems.narod.ru/LM317.htm Долговечность светодиодов определяется качеством изготовления кристалла, а для белых светодиодов еще и качеством люминофора. В процессе эксплуатации скорость деградации кристалла …
MCC – K42 – настройка модуля DMAViews: 989 MCC – в версии v.3.95.0 и начиная ядра 4.85.0 конфигуратор предоставляет графический интерфейс для настройки модуля DMA. Для начала: Посмотреть какая версия МСС можно в закладке версии, если …
Проект с использованием MCC часть 12-2Views: 1199 Настало время для изучения шины I2C. Изучать будем на примере работы с индикатором RET012864E. Что изменили со старой схемы: В прошлой теме я затупил и не добавил подтягивающие резисторы …
Altium Designer my Libraries, Project templates, System settings by Catcatcat V24.0 PROViews: 541 Назвемо цей варіант поновлення для професіоналів і не тільки. Що нового? 1. Повністю змінено структуру параметрів бази даних компонента. Це дозволило повноцінної роботи Актив ВОМ. Ви відразу отримуєте …
Altium Designer first projectViews: 533 Эта статья подразумевает, что у вас установлен и настроен Altium Designer как описано в статье Altium Designer my setup system and project structure. Обратите внимание! Библиотека постоянно обновляется, …
CAN – Controller Area NetworkViews: 1252 Controller Area Network (CAN) первоначально был создан немецким поставщиком автомобильных систем Робертом Бош в середины 1980-х для автомобильной промышленности как метод для обеспечения возможности надежной последовательной связи. Целью было сделать автомобили более надежными, …
Стробоскоп для автомобиляViews: 2248 Одним из популярных решений светового тюнинга автомобиля, мотоцикла или скутера стал эффект – “полицейский стробоскоп“. На база платы ch-c0050 реализовано несколько проектов. В этой статье приводятся две версии …
Инфракрасный датчик движения, PIR-sensorViews: 3312 Домашняя автоматика предполагает наличие датчиков движения, которые способны контролировать движения человека. Самым простым и доступным устройством позволяющие контролировать изменения ИК-излучения, это ПИР-сенсоры. На текущий момент доступны не дорогие модели D203B, D204B, D205B. Все …
NeoPixel LED and PIC24Views: 757 Популярность однопроводной шины для управления светодиода типа WS2812 не ослабевает, а новые типы светодиодов в корпусах 3,5*3,5мм, 2,0*2,0мм становяться все больше привлекательными. Построение дисплеев для анимации требуют все …








