
Просмотров: 2925
Светодиоды все больше входят в нашу жизнь как источники освещения и как само собой разумеющееся, это вопрос регулировки яркости. Существует множество схемных решений, но в нашем варианте мы приведем несколько решений на PIC-микроконтроллеров. PIC10F320/322 это идеальное решения для создания всевозможных регуляторов освещения. При этом мы получаем довольно функционально навороченное устройство с минимальной стоимостью и минимальными затратами времени на изготовление. Этот проект направлен для начинающих, для которых необходима информация как с нуля начать программировать и получить базовые знания по микроконтроллеру и по языку программирования Си.
Пример первый, самый простой регулятор с управлением яркостью от потенциометра, яркость задается вращением потенциометра от 0 до 100% (256 уровней яркости).
Схема регулятора.
Яркость задается напряжением сниманием с потенциометра R1. Это управляемое напряжение подается на вход RA0, настроенным как аналоговый вход и подключенным ко входу AN2 АЦП микроконтроллера. Процедура АЦП помещена в основный цикл работы программы, полученное значение напрямую грузиться в регистр ШИМ микроконтроллера. Выход ШИМ RA1 управляет силовым ключом на транзисторе V1. Как видно со схемы все элементарно просто. Стабилизатор предназначен для получения стабилизированного питания для микроконтроллера и само сбой разумеется можно такую схему использовать в цепях стандартного напряжения 12-24 вольта постоянного напряжения. Силовой транзистор можно брать любой с логическим уровнем управления, т.е. это те транзисторы, которые при подаче 1-2 вольта на затвор полностью открывают свой канал. Например на транзисторе IRF7805 можно коммутировать ток до 13 Ампер (естественно при определенных условиях), а для любых условий до 5 ампер легко. Соединитель CON1 предназначен, только для внутрисхемного программирования контроллера, для этой цели предназначены и резисторы R2 и R5, т.е. если микроконтроллер запрограммирован, то эти элементы можно не ставить, ну и R4 и BAV70 предназначены для защиты от перенапряжения и неправильного включения напряжения питания. Конденсаторы C1 и C2 керамические и предназначены для подавления импульсных помех, а также для надежности работы аналогового стабилизатора LM75L05.
Построения программы.
Построение начинается у указанием компилятору с чем он работает, а также конфигурирования микроконтроллера:
#include <xc.h> // для настройки под выбранный контроллер //------------------------------------------------------------------------------ // конфигурирование контроллера PIC10F320 //------------------------------------------------------------------------------ // конфигурирование контроллера #pragma config FOSC = INTOSC // INTOSC oscillator: CLKIN function disabled //#pragma config FOSC_EC // EC: CLKIN function enabled #pragma config BOREN = ON // Brown-out Reset enabled/сброс по понижению питания включен #pragma config WDTE = ON // WDT enabled #pragma config PWRTE = ON // Таймер задержки включения питания/Power-up Timer Enable #pragma config MCLRE = ON // MCLR/VPP pin function is digital input #pragma config CP = ON // Program memory code protection is enabled #pragma config LVP = OFF // High-voltage on MCLR/VPP must be used for programming #pragma config LPBOR = ON // Brown-out Reset enabled/сброс по понижению питания включен #pragma config BORV = HI // Brown-out Reset Voltage (VBOR) set to 2.7V #pragma config WRT = ALL // 000h to 0FFh write protected, no addresses may be modified by EECON control //------------------------------------------------------------------------------ #define _XTAL_FREQ 16000000 // тактовая частота
После того как контроллер сконфигурирован необходимо настроить порты ввода вывода, настроить ШИМ, настроит работу АЦП. Это все уже выполняется в программе:
//------------------------------------------------------------------------------ void main(void) { CLRWDT(); // сброс сторожевого таймера +++++++++++++++++++++- // настройка внутренего генератора OSCCON = 0b01110000; //OSCILLATOR CONTROL REGISTER /* +++------- 111 = 16 MHz */ // настройка сторожевого таймера WDTCON = 0b00100101; // настройка портов, функций аналоговых входов PORTA = 0b00000000; TRISA = 0b00000100; LATA = 0b00000000; ANSELA = 0b00000100;// аналоговый вход для нашего потенциометра WPUA = 0b00000000; // OPTION_REG = 0b00000000; // настройка ШИМ T2CON = 0b00000100; PR2=255; PWM2CON = 0b11100000; PWM2DCH = 0; PWM2DCL = 0; // настройка АЦП ADCON = 0b10001001;//
И как итог главный цикл программы с супер сложно навороченным кодом состоящим из 4 строк, из которых только три имеют место к самой работе регулятора света.
- Запустить АЦП на измерение.
- Дождаться окончания измерения.
- Загрузить полученное значение в ШИМ.
// главный цикл программы while(1) { CLRWDT(); // сброс сторожевого таймера +++++++++++++++++++++- GO_nDONE=1; // запуск измерения уровня сигнала от АЦП while(GO_nDONE); // ожидаем окончания PWM2DCH=ADRES; // управление яркостью }
Всё! Как вы убедились – микроконтроллеры это просто!!!
Фото проекта:
Видео работы диммера:
Пример второй. Так как мы работаем с микроконтроллером, добавим две кнопки, то выполним вариант задание яркости потенциометром, а управлением кнопками функции включено / выключено.
Схема для примера.
К свободным входам RA0 и RA3 добавим тактовые кнопки подключенные к земле.
Изменение программы для возможности добавления двух кнопок для получения функций управления:
Получение доступа к порту RA3:
#pragma config MCLRE = OFF // MCLR/VPP на функцию цифрового входа, для кнопки функция
Описание, для удобства названия кнопок и к какому порту они подключены:
// подключение кнопок #define KN01 PORTAbits.RA0 // #define KN02 PORTAbits.RA3 //
Изменение настроек портов и включение подтягивающих резисторов (это для создание потенциала каким можно будет управлять кнопками):
// PORTA = 0b00000000; TRISA = 0b00001101; // 0 и 3 на вход цифровой LATA = 0b00000000; ANSELA = 0b00000100; // аналоговый вход для нашего потенциометра // включить подтягивающие резисторы WPUA = 0b00001001; // OPTION_REG = 0b00000111; //
И для тестового варианта, самая простая программа которая будут просто включать выключать освещения. Необходимо учитывать, что переделывается программа с примера 1 в котором яркость управляется при помощи ШИП, для включения необходимо в ШИМ записать значение 255, для отключения значение 0.
// главный цикл программы while(1) { CLRWDT(); // сброс сторожевого таймера +++++++++++++++++++++- // GO_nDONE=1; // запуск измерения уровня сигнала от АЦП // while(GO_nDONE); // ожидаем окончания // PWM2DCH=ADRES; // управление яркостью if(!KN01)PWM2DCH=0; if(!KN02)PWM2DCH=255; }
В этом фрагменте программы достигнут эффект управления кнопками простого включения/выключения освещения на 100%.
В следующем примере совместим функции регулировки яркости и функции включения выключения освещения кнопками.
// главный цикл программы while(1) { CLRWDT(); // сброс сторожевого таймера +++++++++++++++++++++- GO_nDONE=1; // запуск измерения уровня сигнала от АЦП while(GO_nDONE); // ожидаем окончания // контроль состояния кнопок и переключения режима включено/выключено if(!KN01)ON_OFF=0; else if(!KN02)ON_OFF=1; // управление яркость if(ON_OFF) { PWM2DCH=ADRES; // управление яркостью освещения } else { PWM2DCH=0; // выключить освещение } }
В этом примере потенциометром задается яркость, а кнопками реализована функциями ВКЛ/ВЫКЛ.
Схема для варианта управления кнопками.
Вариант программы позволяющей регулировать яркость двумя кнопками:
// главный цикл программы while(1) { CLRWDT(); // сброс сторожевого таймера +++++++++++++++++++++- // контроль состояния кнопок и переключения режима включено/выключено if(!KN01) { if(!NAZ) { NAZ=1; // кнопка нажата __delay_ms(10); // зашита дребезга if(!KN01) { if(PWM2DCH<255)PWM2DCH=PWM2DCH+5; } } } else if(!KN02) { if(!NAZ) { NAZ=1; // кнопка нажата __delay_ms(10); // зашита дребезга if(!KN02) { if(PWM2DCH>0)PWM2DCH=PWM2DCH-5; } } } else { NAZ=0; // кнопка не нажата } }
В этом примере можно найти один из решений проблемы блокировки дребезг от механики кнопок и функции контроля одиночного нажатия кнопки. Каждое нажатие выполняет изменение яркости на SHAG если SHAG=5 единиц, в этом варианте мы будем иметь 51 ступень яркости. Для изменения ШАГА яркости (уменьшения ступеней яркости) необходимо константу SHAG. Увеличение значения уменьшает количество ступеней яркости. В текущем примере шаг это константа 5. Ниже приведем вариант когда шаг яркости может быть в довольна широких значениях, что даст возможность приспособить для любых проектов.
Для управления добавим пару параметров:
bit NAZ; // флаг кнопка нажата #define SHAG 10 // шаг изменения яркости int yarkost=0; // яркость
Сам главный цикл:
// главный цикл программы while(1) { CLRWDT(); // сброс сторожевого таймера +++++++++++++++++++++- // контроль состояния кнопок и переключения режима включено/выключено if(!KN01) { if(!NAZ) { NAZ=1; // кнопка нажата __delay_ms(10); // зашита дребезга if(!KN01) { if(yarkost<255) { yarkost+=SHAG; if(yarkost>255)yarkost=255; } } } } else if(!KN02) { if(!NAZ) { NAZ=1; // кнопка нажата __delay_ms(10); // зашита дребезга if(!KN02) { if(yarkost>0) { yarkost-=SHAG; if(yarkost<0)yarkost=0; } } } } else { NAZ=0; // кнопка не нажата } PWM2DCH=yarkost; // загрузка яркости }
В этом примере константу можно менять от 1 до ~100 т.е. получить даже 2 ступени яркости.
Видео демонстрации работы примера 2
Пример третий. Выполним вариант задание яркости с применением двух кнопок (режим автоповтора). В этом примере при нажатии на кнопку яркость изменяется на 10 единиц, при удержании кнопки реализовано плавное изменение яркости с шагом равной 1.
Добавим несколько переменных:
bit NAZ; // флаг кнопка нажата #define SHAG 1 // шаг изменения яркости для автоматического #define SHAGr 10 // шаг изменения яркости для ручного режима #define SPEEDY 2000 // константа скорости изменения яркости int yarkost=0; // яркость int timerauto; // таймер автоповтора
Главный цикл:
// главный цикл программы while(1) { CLRWDT(); // сброс сторожевого таймера +++++++++++++++++++++- // контроль состояния кнопок и переключения режима включено/выключено if(!KN01) { if(!NAZ) { NAZ=1; // кнопка нажата __delay_ms(10); // зашита дребезга if(!KN01) { if(yarkost<255) { yarkost+=SHAGr; if(yarkost>255)yarkost=255; } } } else { if(--timerauto==0) { timerauto=SPEEDY; if(yarkost<255) { yarkost+=SHAG; if(yarkost>255)yarkost=255; } } } } else if(!KN02) { if(!NAZ) { NAZ=1; // кнопка нажата __delay_ms(10); // зашита дребезга if(!KN02) { if(yarkost>0) { yarkost-=SHAGr; if(yarkost<0)yarkost=0; } } } else { if(--timerauto==0) { timerauto=SPEEDY; if(yarkost>0) { yarkost-=SHAG; if(yarkost<0)yarkost=0; } } } } else { NAZ=0; // кнопка не нажата } PWM2DCH=yarkost; // загрузка яркости }
Видео проекта для примера 3 и 4 одновременно
Пример четвертый. Добавим третью кнопку с функцией ВКЛ/ВЫКЛ.
Схема.
Настройка портов микроконтроллера для работы с 3 кнопками.
// настройка портов, функций аналоговых входов // PORTA = 0b00000000; TRISA = 0b00001101; // 0 и 3 на вход цифровой LATA = 0b00000000; ANSELA = 0b00000000; // аналоговый вход для нашего потенциометра // включить подтягивающие резисторы WPUA = 0b00001101; // OPTION_REG = 0b00000111; //
Главный цикл программы.
// главный цикл программы while(1) { CLRWDT(); // сброс сторожевого таймера +++++++++++++++++++++- // контроль состояния кнопок и переключения режима включено/выключено if(!KN01) { if(!NAZ) { NAZ=1; // кнопка нажата __delay_ms(10); // зашита дребезга if(!KN01) { if(yarkost<255) { yarkost+=SHAGr; if(yarkost>255)yarkost=255; } } } else { if(--timerauto==0) { timerauto=SPEEDY; if(yarkost<255) { yarkost+=SHAG; if(yarkost>255)yarkost=255; } } } } else if(!KN02) { if(!NAZ) { NAZ=1; // кнопка нажата __delay_ms(10); // зашита дребезга if(!KN02) { if(yarkost>0) { yarkost-=SHAGr; if(yarkost<0)yarkost=0; } } } else { if(--timerauto==0) { timerauto=SPEEDY; if(yarkost>0) { yarkost-=SHAG; if(yarkost<0)yarkost=0; } } } } else if(!KN03) { if(!NAZ) { NAZ=1; // кнопка нажата __delay_ms(10); // зашита дребезга if(!KN03) { ON_OFF=!ON_OFF; // включить-выключить } } } else { NAZ=0; // кнопка не нажата } if(ON_OFF)PWM2DCH=yarkost; // загрузка яркости else PWM2DCH=0;// выключить освещение }
Функции кнопок KN01 – увеличение яркости, KN02 – уменьшение яркости, KN03 – включено – выключено.
P/S.
PIC10F3xx – самый удобный контроллер для начала изучения программирования и освоения для начинающих.
Пример 1:
Схема в формате PDF для примера 1

Самый простой диммер для светодиодного освещения схема в PDF v1.00 11.54 KB 543 downloads
Самый простой диммер для светодиодного освещения...
Самый простой диммер для светодиодного освещения прошивка v1.0 0.26 KB 433 downloads
Самый простой диммер для светодиодного освещения...
Самый простой диммер для светодиодного освещения прошивка v3.0 0.30 KB 422 downloads
Самый простой диммер для светодиодного освещения...
Самый простой диммер для светодиодного освещения прошивка v4.0 0.43 KB 391 downloads
Самый простой диммер для светодиодного освещения...
Самый простой диммер для светодиодного освещения прошивка v5.0 0.53 KB 407 downloads
Самый простой диммер для светодиодного освещения...Самый простой диммер для светодиодного освещения прошивка v6.0 0.58 KB 464 downloads
Самый простой диммер для светодиодного освещения...Проект с примерами Microchip MPLAB XC8 C Compiler V1.30, MPLAB X IDE v2.00

Самый простой диммер для светодиодного освещения проект 58.14 KB 113 downloads
Самый простой диммер для светодиодного освещения...
Самый простой диммер для светодиодного освещения схема в PDF v3.00 11.70 KB 427 downloads
Самый простой диммер для светодиодного освещения...
Самый простой диммер для светодиодного освещения схема в PDF v4.00 11.43 KB 396 downloads
Самый простой диммер для светодиодного освещения...
Самый простой диммер для светодиодного освещения схема в PDF v5.00 11.52 KB 645 downloads
Самый простой диммер для светодиодного освещения...Это может быть интересно
Toyota Auto Fader – Модуль включения усилителя
Просмотров: 1874 Toyota Auto Fader – Модуль включения усилителя. Часто автолюбители прибегают к замене штатного головного устройства на универсальное мультимедийное, в котором значительно расширены функциональные возможности. Если возникает желание оставить …MPLAB® Harmony – или как это просто! Часть 3.
Просмотров: 2020 Часть третья – копнём немного глубже. Вы наверное заметили, что во второй главе, вроде сначала все шло как по маслу, а потом, что бы заморгали светики, я вставил …Простой цифровой регулятор мощности
Просмотров: 6353 Простой регулятор мощности с цифровой индикацией. Этот проект создан как обучающий, для ознакомления с основами построения сетевых регуляторов мощности. Устройства подобного типа можно использовать для управления освещением, скоростью …Проект с использованием MCC часть 12-1
Просмотров: 865 В настоящее время без визуализации информации уже не интересно. Поэтому научимся выводить информацию на дисплей. Для это возьмет простенький OLED RET012864E/REX012864J я такой приобретал в фирме “Гамма-Украина”, описание можно …Четырех канальный терморегулятор ch-4000
Просмотров: 3084 Четыре независимых канала регулирования температуры, одновременно можно подключить 16 датчиков температуры DS18B20 с удалением до трехсот метров. Можно для регулировки выбрать любой датчик, подключенный к устройству. Каждый канал может работать …Просто о внешних переменных
Просмотров: 739 Часто возникает задача когда необходимо предавать данные между модулями программы. Например, передать данные между файлами, или управлять работой модулей. Для этого создаем заголовочный файл и описываем наши переменные как …Проект с использованием MCC часть 05
Просмотров: 1761 Эту часть назовем так как избавься от delay, там где а это реально не надо. Для это нам потребуется научиться использовать прерывания и работать с таймерами. Что такое …TDA7294 part 1
Просмотров: 161 TDA7294 має унікальні дані для створення підсилювачів звукової частоти HI-FI класу. Варіант застосування є конфігурація BRIDGE (мостова схема включення), де використовуються два TDA7294, як показано на схематичній діаграмі …Altium Designer first project
Просмотров: 184 Эта статья подразумевает, что у вас установлен и настроен Altium Designer как описано в статье Altium Designer my setup system and project structure. Обратите внимание! Библиотека постоянно обновляется, …12-BIT A/D CONVERTER WITH THRESHOLD DETECT на примере PIC24FJ128GA204
Просмотров: 779 Введение. 12-битный модуль A/D Converter является усовершенствованной версией 10-битного модуля, предлагаемого на некоторых устройствах PIC24. Оба модуля являются преобразователями, в своих ядрах, с последовательным приближением (SAR), в окружении …