Views: 2047
Измерение температуры и влажности при помощи датчика DHT11.
Статья в PDF [wpdm_file id=220]
DHT11 недорогой цифровой датчик температуры и влажности. Он использует емкостной датчик влажности и терморезистор для измерения температуры окружающего воздуха, данные выдает в цифровой форме по шине типа 1-wire. В использовании он довольно прост, но требует точного определения длительности временных сигналов, чтобы декодировать данные. Единственный недостаток это возможность получения данных не чаще 1 раза в две секунды.
Особенности.
· Температурная компенсация во всем диапазоне работы
· Измерение относительной влажности и температуры
· Калиброванный цифровой сигнал
· Отличная долгосрочная стабильность показаний
· Не требуются дополнительные компоненты
· Возможность передачи данных на большое растояние
· Низкое энергопотребление
· 4-контактный корпус и полностью взаимозаменяемы
Детали.
Для преобразования данных внутри датчика используется 8-битный микроконтроллер, В процессе производства датчики калибруются и калибровочная константа записывается вместе с программой в память микроконтроллера. Однопроводный последовательный интерфейс дает возможность быстрой интеграции в устройство. Его небольшие размеры, низкое энергопотребление и до-20-метром передачи сигнала, что делает его привлекательным выбором для различных приложений.
Диапазон измеряемых параметров.
Обзор:
Параметр | Диапазон измерения | Точность | Разрешение |
Влажность | 20-90% | ±5% | 1 |
Температура | 0-50°С | ±2°С | 1 |
Подробные спецификации:
Параметр | Условия | Минимальное | Типичное | Максимальное |
Влажность | ||||
Разрешение | 1% | 1% | 1% | |
8 бит | ||||
Стабильность | ±1%RH | |||
Точность | 25°С | ±4%RH | ||
0-50°С | ±5%RH | |||
Взаимозаменяемость | полностью взаимозаменяемы | |||
Диапазон измерения |
0°С | 30%RH | 90%RH | |
25°С | 20%RH | 90%RH | ||
50°С | 20%RH | 80%RH | ||
Время отклика (в секундах) |
1/e(63%)25℃, 1m/s Air |
6 | 10 | 15 |
Гистерезис | ±1%RH | |||
Долговременная стабильность |
типичная | ±1%RH/year | ||
Температура | 1°С | 1°С | 1°С | |
Разрешение | 8 бит | 8 бит | 8 бит | |
Стабильность | ±1°С | |||
Точность | ±1°С | ±2°С | ||
Диапазон измерения |
0°С | 50°С | ||
Время отклика (в секундах) |
6 | 30 |
Электрические параметры:
Параметр | Режим | Мин | Типовое | Макс | Ед.изм. |
Напряжение питания | DC | 3 | 5 | 5.5 | V |
Ток потребления | Измерение | 0.5 | 2.5 | mA | |
Ожидание | 100 | 150 | uA | ||
Среднее | 0.2 | 1 | mA |
Габаритные размеры и подключение:
Питание DHT11 составляет 3-5.5V DC. После подачи питания на датчик, необходимо выдержать паузу длительностью не менее 1 секунды перед началом считывания данных. Для фильтрации напряжения питания можно добавить один конденсатор 0,1 мкФ между Vdd и Vss.
Последовательный интерфейс (Single-Wire Двусторонний)
Весь обмен данными выполняется по одной одному проводу (шине). На шине может присутствовать только один датчик. Для получения высокого уровня используется подтягивающий резистор (5-10 кОм), т.е в пассивном состоянии на шине высокий уровень. Формат обмена данными может быть разделен на три этапа:
1) Инициализации.
2) Преамбула.
3) Передача данных.
Инициализация.
Процесс чтения данных начинается с импульса инициализации который формирует микроконтроллер. Он должен установить на шине низкий уровень на время не менее 18 mS, для инициализации DHT-11.
Преамбула.
Микроконтроллер после формирования импульса инициализации должен сразу перевести порт в режим чтения (режим приема данных). Если датчик готов к передачи данных, он ответит сформировав преамбулу. Один период меандра длительностью ~160 us.
Микроконтроллер получив ответ от датчика, может начать чтение данных.
Передача данных.
Данные представляют собой 5 байт данных, которые читаются по битно микроконтроллером, т.е всего 40 бит.
Первые два байта данные влажности (относительная влажность), целая и дробная часть. Третий и четвертый температура (градусы Цельсия), целая и дробная часть и пятый последний байт контрольная сумма, которая равна сумме первых 4 байт. К сожалению хотя и присутствуют байты отвечающие за десятые доли градуса и процента, реально контроллер датчика их не вычисляет (хотя это и понятно при такой точности это бесполезно), поэтому в них всегда присутствуют нули. Если реально считывать эти байты то мы увидим, например:
bait0 = 41 // влажность
bait1 = 0
bait2 = 31 // температура
bait3 = 0
bait4 = 72 // контрольная сумма
Но нет худа без добра, если в этих байтах всегда нули, то можно это значение (аналогично как для контрольной суммы) использовать для достоверности передачи данных.
Данные кодируются длительностью высокого уровня в каждом бите, бит начинается стробом низкого уровня длительностью приблизительно 50-54uS, после строба идет высокий уровень, если длительность высокого уровня в пределах 24 uS, то это передается “0”, если в пределах 70 uS – передается “1”.
Бит ‘0 ‘:
По окончанию передачи данных датчик передает последний строб, устанавливает на шине высокий уровень и переходит в спящий режим.
Логика чтения данных может быть следующая.
Вид передачи полностью:
Датчик подключается ко входу который может формировать прерывания по изменению уровня на входе. Для определения длительности импульса можно использовать таймер микроконтроллера.
Для демо проекта используем плату ILLISSI_B4_primum с установленным микроконтроллером PIC16F1936. Для индикации данные будем выводить, через USB порт на терминал программы AN1310 Microchip.
Вариант построение программа для чтения данных с датчика для компилятора MPLAB® XC8 Compiler v1.20. Для измерение длительности мы применим таймер Timer0. А для контроля моментов изменения сигнала на входах будем использовать возможность микроконтроллера формировать прерывания по изменению состояния на входах. Всё декодирование данных будет выполняться в прерывании (благо там минимум работы), поэтому для основной программы остается только дать “толчек” для выдачи данных и обработать их когда данные будут готовы.
Настройка прерывание для работы с датчиком
IOCBP=0b00000000; // отключить все прерывания и сбросить все флаги IOCBN=0b00000000; IOCBF=0b00000000; INTCON=0b11001000; /* || | +---- сбросить флаг прерывания от изменеию состояния на входе * || +------- разрешить прерывания по изменению состояния на входе * |+---------- разрешить прерывания от переферии * +----------- разрешить глобальные прерывания */ OPTION_REG=0b11000010;// настройка таймера Timer0 /* |+++---- PS<2:0>:010-1 : 8 * +------- PSA:0 = Prescaler is assigned to the Timer0 module */
Функция запуска измерения (её можно в ставить в главный цикл для постоянного получения данных)
if(DHT11==0)// запуск измерения { DHT11=1; // включить цикл измерения TRISB=0; // настроить порт на выход LATB0=0; // установить низкий уровень __delay_ms(18); // задержка в 18 миллисекунд (больше можно :)) IOCBP0=1; // настроить прерывание на входе RB0 на фронт IOCBF0=0; // сбросить флаг прерывания TRISB=1; // настроить порт на вход PREAM=1; // поиск преамбулы }
Вариант обработки прерываний
//=====================================прерывания================================== void interrupt my_isr(void) // { if(IOCIF) { IOCIF=0; //сбросить флаг IOCBF0=0; //сбросить флаг if(DHT11) { if(IOCBP0)// если прерывания по фронту { IOCBP0=0; // отключить прерывание по фронту IOCBN0=1; // включить прерывание по срезу TMR0=0; // сбросить таймер TMR0IF=0; // сбросить флаг переполнения TMR0IE=1; // разрешить прерывания TMR0 } else { dlinimp=TMR0; // сохранить значение таймера в регистр TMR0=0; // сбросить таймер TMR0IF=0; // сбросить флаг переполнения IOCBP0=1; //включить прерывание по фронту IOCBN0=0; //отключить прерывание по срезу LATB1=!LATB1; // переключить светодиод if(!TMR0IF) { if(PREAM)// поиск преамбулы { if(dlinimp>80) { PREAM=0;// преамбула принята countbit=0; } } else { if(countbit<8) { bait0<<=1; if(dlinimp>30) bait0 |= 0b00000001;// определение бита и запись его в байт приема } else if(countbit<16) { bait1<<=1; if(dlinimp>30) bait1 |= 0b00000001;// определение бита и запись его в байт приема } else if(countbit<24) { bait2<<=1; if(dlinimp>30) bait2 |= 0b00000001;// определение бита и запись его в байт приема } else if(countbit<32) { bait3<<=1; if(dlinimp>30) bait3 |= 0b00000001;// определение бита и запись его в байт приема } else if(countbit<40) { bait4<<=1; if(dlinimp>30) bait4 |= 0b00000001;// определение бита и запись его в байт приема } countbit++;// увеличить счетчик бит } } else { ERROR_DHT11=1; // неисправность датчика } } } } if(TMR0IF) { TMR0IF=0; DHT11=0; TMR0IE=0; //запретить прерывания TMR0 } }//===================================end_interrupt=================================
Вывод: простой недорогой датчик влажности и температуры, для проектов бытового назначения.
[box title=”Файлы для загрузки” color=”#521BDE”] Демонстрационный проект, MPLAB® X IDE v1.85, MPLAB® XC8 Compiler v1.20[wpdm_file id=219][/box]
Это может быть интересно
- Мониторинг температурыViews: 1389 Настоящий проект создан как обучающий с применением библиотек ds18b20 и LCDHD44780 и компилятора Microchip MPLAB XC8 C Compiler V1.12. Если необходимо иметь информацию по состоянию температуры в помещении или в здании, с количеством до 6 точек (16), то …
- 12-BIT A/D CONVERTER WITH THRESHOLD DETECT на примере PIC24FJ128GA204Views: 830 Введение. 12-битный модуль A/D Converter является усовершенствованной версией 10-битного модуля, предлагаемого на некоторых устройствах PIC24. Оба модуля являются преобразователями, в своих ядрах, с последовательным приближением (SAR), в окружении …
- Универсальный терморегулятор ch-c3000Views: 2992 Терморегулятор ch-c3000 предназначен для управления системами регулирования температуры в пределах от – (минус) 55 до + 125 С. Регулятор может использоваться как в системах отопления, так и в …
- LED модуль P10C4V12Views: 3109 LED панели на обычных регистрах типа 74HC595. Они выпускаются как монохромные так двух и полно цветные, особенность, что они предназначены для текстовой информации и имеют один уровень яркости. Общую яркость …
- Индикатор кода – RC-5 Protocol PhilipsViews: 993 Индикатор кода – RC-5 Protocol Philips При конструировании дистанционного управления на инфракрасных лучах для контроля удобно иметь индикатор кодов передаваемых пультом. Плата ch-c3000 позволяет изготавливать устройства с возможностью …
- USB K-L-line адаптерViews: 5989 USB K-L-line адаптер предназначен для связи персонального компьютера с диагностической шиной автомобиля – интерфейс ISO-9141. Этот проект предназначен для сборки недорого устройства с использованием специально для этой цели …
- Сенсорный выключатель светаViews: 12232 Хотя в настоящий момент актуальны системы управления освещением с передачей данных по электросети, но я думаю, что проекты такого рода тоже имеют право на жизнь. Анонс Три вида …
- Проект с использованием MCC часть 14Views: 833 С выводом данных на дисплей мы справились (но могу сразу сказать библиотеку графики к этой статьи пришлось доработать, поэтому в этом проекте она обновлена). У нас на текущем …
- Применение typedef, struct и unionViews: 8732 Полезные описания переменных Часто необходимо в памяти расположить последовательно разные виды данных, что бы потом можно было их использовать. Полезные ссылки Взято и переработано с сайта http://www.butovo.com/~zss/cpp/struct.htm http://cppstudio.com/post/9172/ …
- AD9833 – Programmable Waveform Generator – part twoViews: 1772 Прошло время и появилась тема, что-бы закончить проект AD9833 – Programmable Waveform Generator. Приехали печатные платы. В этот раз я печатные платы заказывал в https://jlcpcb.com/ делал это в …