Views: 2100
Измерение температуры и влажности при помощи датчика DHT11.
Статья в PDF [wpdm_file id=220]
DHT11 недорогой цифровой датчик температуры и влажности. Он использует емкостной датчик влажности и терморезистор для измерения температуры окружающего воздуха, данные выдает в цифровой форме по шине типа 1-wire. В использовании он довольно прост, но требует точного определения длительности временных сигналов, чтобы декодировать данные. Единственный недостаток это возможность получения данных не чаще 1 раза в две секунды.
Особенности.
· Температурная компенсация во всем диапазоне работы
· Измерение относительной влажности и температуры
· Калиброванный цифровой сигнал
· Отличная долгосрочная стабильность показаний
· Не требуются дополнительные компоненты
· Возможность передачи данных на большое растояние
· Низкое энергопотребление
· 4-контактный корпус и полностью взаимозаменяемы
Детали.
Для преобразования данных внутри датчика используется 8-битный микроконтроллер, В процессе производства датчики калибруются и калибровочная константа записывается вместе с программой в память микроконтроллера. Однопроводный последовательный интерфейс дает возможность быстрой интеграции в устройство. Его небольшие размеры, низкое энергопотребление и до-20-метром передачи сигнала, что делает его привлекательным выбором для различных приложений.
Диапазон измеряемых параметров.
Обзор:
Параметр | Диапазон измерения | Точность | Разрешение |
Влажность | 20-90% | ±5% | 1 |
Температура | 0-50°С | ±2°С | 1 |
Подробные спецификации:
Параметр | Условия | Минимальное | Типичное | Максимальное |
Влажность | ||||
Разрешение | 1% | 1% | 1% | |
8 бит | ||||
Стабильность | ±1%RH | |||
Точность | 25°С | ±4%RH | ||
0-50°С | ±5%RH | |||
Взаимозаменяемость | полностью взаимозаменяемы | |||
Диапазон измерения |
0°С | 30%RH | 90%RH | |
25°С | 20%RH | 90%RH | ||
50°С | 20%RH | 80%RH | ||
Время отклика (в секундах) |
1/e(63%)25℃, 1m/s Air |
6 | 10 | 15 |
Гистерезис | ±1%RH | |||
Долговременная стабильность |
типичная | ±1%RH/year | ||
Температура | 1°С | 1°С | 1°С | |
Разрешение | 8 бит | 8 бит | 8 бит | |
Стабильность | ±1°С | |||
Точность | ±1°С | ±2°С | ||
Диапазон измерения |
0°С | 50°С | ||
Время отклика (в секундах) |
6 | 30 |
Электрические параметры:
Параметр | Режим | Мин | Типовое | Макс | Ед.изм. |
Напряжение питания | DC | 3 | 5 | 5.5 | V |
Ток потребления | Измерение | 0.5 | 2.5 | mA | |
Ожидание | 100 | 150 | uA | ||
Среднее | 0.2 | 1 | mA |
Габаритные размеры и подключение:
Питание DHT11 составляет 3-5.5V DC. После подачи питания на датчик, необходимо выдержать паузу длительностью не менее 1 секунды перед началом считывания данных. Для фильтрации напряжения питания можно добавить один конденсатор 0,1 мкФ между Vdd и Vss.
Последовательный интерфейс (Single-Wire Двусторонний)
Весь обмен данными выполняется по одной одному проводу (шине). На шине может присутствовать только один датчик. Для получения высокого уровня используется подтягивающий резистор (5-10 кОм), т.е в пассивном состоянии на шине высокий уровень. Формат обмена данными может быть разделен на три этапа:
1) Инициализации.
2) Преамбула.
3) Передача данных.
Инициализация.
Процесс чтения данных начинается с импульса инициализации который формирует микроконтроллер. Он должен установить на шине низкий уровень на время не менее 18 mS, для инициализации DHT-11.
Преамбула.
Микроконтроллер после формирования импульса инициализации должен сразу перевести порт в режим чтения (режим приема данных). Если датчик готов к передачи данных, он ответит сформировав преамбулу. Один период меандра длительностью ~160 us.
Микроконтроллер получив ответ от датчика, может начать чтение данных.
Передача данных.
Данные представляют собой 5 байт данных, которые читаются по битно микроконтроллером, т.е всего 40 бит.
Первые два байта данные влажности (относительная влажность), целая и дробная часть. Третий и четвертый температура (градусы Цельсия), целая и дробная часть и пятый последний байт контрольная сумма, которая равна сумме первых 4 байт. К сожалению хотя и присутствуют байты отвечающие за десятые доли градуса и процента, реально контроллер датчика их не вычисляет (хотя это и понятно при такой точности это бесполезно), поэтому в них всегда присутствуют нули. Если реально считывать эти байты то мы увидим, например:
bait0 = 41 // влажность
bait1 = 0
bait2 = 31 // температура
bait3 = 0
bait4 = 72 // контрольная сумма
Но нет худа без добра, если в этих байтах всегда нули, то можно это значение (аналогично как для контрольной суммы) использовать для достоверности передачи данных.
Данные кодируются длительностью высокого уровня в каждом бите, бит начинается стробом низкого уровня длительностью приблизительно 50-54uS, после строба идет высокий уровень, если длительность высокого уровня в пределах 24 uS, то это передается “0”, если в пределах 70 uS – передается “1”.
Бит ‘0 ‘:
По окончанию передачи данных датчик передает последний строб, устанавливает на шине высокий уровень и переходит в спящий режим.
Логика чтения данных может быть следующая.
Вид передачи полностью:
Датчик подключается ко входу который может формировать прерывания по изменению уровня на входе. Для определения длительности импульса можно использовать таймер микроконтроллера.
Для демо проекта используем плату ILLISSI_B4_primum с установленным микроконтроллером PIC16F1936. Для индикации данные будем выводить, через USB порт на терминал программы AN1310 Microchip.
Вариант построение программа для чтения данных с датчика для компилятора MPLAB® XC8 Compiler v1.20. Для измерение длительности мы применим таймер Timer0. А для контроля моментов изменения сигнала на входах будем использовать возможность микроконтроллера формировать прерывания по изменению состояния на входах. Всё декодирование данных будет выполняться в прерывании (благо там минимум работы), поэтому для основной программы остается только дать “толчек” для выдачи данных и обработать их когда данные будут готовы.
Настройка прерывание для работы с датчиком
IOCBP=0b00000000; // отключить все прерывания и сбросить все флаги IOCBN=0b00000000; IOCBF=0b00000000; INTCON=0b11001000; /* || | +---- сбросить флаг прерывания от изменеию состояния на входе * || +------- разрешить прерывания по изменению состояния на входе * |+---------- разрешить прерывания от переферии * +----------- разрешить глобальные прерывания */ OPTION_REG=0b11000010;// настройка таймера Timer0 /* |+++---- PS<2:0>:010-1 : 8 * +------- PSA:0 = Prescaler is assigned to the Timer0 module */
Функция запуска измерения (её можно в ставить в главный цикл для постоянного получения данных)
if(DHT11==0)// запуск измерения { DHT11=1; // включить цикл измерения TRISB=0; // настроить порт на выход LATB0=0; // установить низкий уровень __delay_ms(18); // задержка в 18 миллисекунд (больше можно :)) IOCBP0=1; // настроить прерывание на входе RB0 на фронт IOCBF0=0; // сбросить флаг прерывания TRISB=1; // настроить порт на вход PREAM=1; // поиск преамбулы }
Вариант обработки прерываний
//=====================================прерывания================================== void interrupt my_isr(void) // { if(IOCIF) { IOCIF=0; //сбросить флаг IOCBF0=0; //сбросить флаг if(DHT11) { if(IOCBP0)// если прерывания по фронту { IOCBP0=0; // отключить прерывание по фронту IOCBN0=1; // включить прерывание по срезу TMR0=0; // сбросить таймер TMR0IF=0; // сбросить флаг переполнения TMR0IE=1; // разрешить прерывания TMR0 } else { dlinimp=TMR0; // сохранить значение таймера в регистр TMR0=0; // сбросить таймер TMR0IF=0; // сбросить флаг переполнения IOCBP0=1; //включить прерывание по фронту IOCBN0=0; //отключить прерывание по срезу LATB1=!LATB1; // переключить светодиод if(!TMR0IF) { if(PREAM)// поиск преамбулы { if(dlinimp>80) { PREAM=0;// преамбула принята countbit=0; } } else { if(countbit<8) { bait0<<=1; if(dlinimp>30) bait0 |= 0b00000001;// определение бита и запись его в байт приема } else if(countbit<16) { bait1<<=1; if(dlinimp>30) bait1 |= 0b00000001;// определение бита и запись его в байт приема } else if(countbit<24) { bait2<<=1; if(dlinimp>30) bait2 |= 0b00000001;// определение бита и запись его в байт приема } else if(countbit<32) { bait3<<=1; if(dlinimp>30) bait3 |= 0b00000001;// определение бита и запись его в байт приема } else if(countbit<40) { bait4<<=1; if(dlinimp>30) bait4 |= 0b00000001;// определение бита и запись его в байт приема } countbit++;// увеличить счетчик бит } } else { ERROR_DHT11=1; // неисправность датчика } } } } if(TMR0IF) { TMR0IF=0; DHT11=0; TMR0IE=0; //запретить прерывания TMR0 } }//===================================end_interrupt=================================
Вывод: простой недорогой датчик влажности и температуры, для проектов бытового назначения.
[box title=”Файлы для загрузки” color=”#521BDE”] Демонстрационный проект, MPLAB® X IDE v1.85, MPLAB® XC8 Compiler v1.20[wpdm_file id=219][/box]
Это может быть интересно
Бегущие огни (ch-bo-36)
Views: 2475 Проект на PIC-микроконтроллере PIC16F648A. Количество каналов 36. Для индикации используется подключение по матрице 6х6. Расположение светодиодов в одну линию. Все эффекты написаны для возможности увеличения количества светодиодов. Рекомендуется …MCC PIC24 – модуль REAL-TIME CLOCK AND CALENDAR (RTCC)
Views: 502 RTCC предоставляет пользователю часы реального времени и функция календаря (RTCC), точность “хода” может быть откалибрована. Основные особенности модуля RTCC: • Работает в режиме глубокого сна. • Возможность выбора источника …Проект с использованием MCC часть 04
Views: 1175 Теперь простого горения светиков нам не достаточно, заставим их мигать. Для начала используем первобытно простой способ, но достаточно простой. Используем функции delay, напрягаться откуда они берутся не будем, самое …OLED RET012864E/REX012864J
Views: 1505 RET012864E/REX012864J ОЛЕД индикатор производитель Raystar-Optronics приобретался в http://www.microchip.ua/ к сожалению никакой информации на сайте поставщика нет. Поэтому решил работу с этой версией индикатора на драйвере SSD1305 предоставить на своем сайте. Так как …CAN – Controller Area Network
Views: 1135 Controller Area Network (CAN) первоначально был создан немецким поставщиком автомобильных систем Робертом Бош в середины 1980-х для автомобильной промышленности как метод для обеспечения возможности надежной последовательной связи. Целью было сделать автомобили более надежными, …DS18B20 – удаленный контроль температуры
Views: 3079 Контроль температуры с использованием датчиков температуры DS18B20 и платы ILLISSI-4B-09-primum Проект позволяет подключать к плате ILLISSI-4B-09-primum до 16 датчиков температуры DS18B20, удаленных более 300 метров, и выводить информацию …Униполярный шаговый двигатель
Views: 2258 В приводах различных устройств часто применяются шаговые двигатели, Шаговый двигатели различают двух типов униполярные – когда обмотки коммутируются током текущим только в одну сторону, например при …ESP8266 применение в проектах
Views: 3641 (Актуально только для версий прошивки 1.хх) ESP8266 показала себя как надежное и безотказное устройство для обмена данными с применением WIFI. Я использую ESP8266 исключительно через UART, с применением AT …Интерактивные Led
Views: 487 Тема проекта продолжение следует…. Это может быть интересноLED драйвер TM1639
Views: 2241 TМ1639 позволяет работать на матрицу 8*8 или 8 семисегметных индикаторов. Может работать как на индикаторы с общим катодом, но и есть возможность подключать общим анодом. Для управления драйвером …