Views: 1148
АЦП ADS1230 – это 20 битный АЦП со скоростью измерения 10 или 80 раз в секунду. При подаче питания АЦП постоянно выполняет измерения. Данные можно получить с него по SPI шине. Максимальная тактовая частота шины до 1 мГц. Каждое измерение выполненное АЦП инициализируется самим АЦП по шине данных положительным импульсом. Чтение микроконтроллер должен начинать по получению отрицательного фронта.
Данные передаются старшим битом в перед для чтения 20 бит необходимо 3 байта. Данные выровнены влево.
Для чтения данных необходимо настроить SPI по отрицательному фронту синхроимпульсов.
Управляя количеством синхроимпульсов можно управлять функциями АЦП, одна из них это калибровка АЦП.
Калибровки смещения
Калибровка смещения может быть начата в любое время для компенсации в ADS1230 погрешности смещения. Чтобы начать калибровку смещения, необходимо по крайней мере, два дополнительных SCLKs после получения 20 бит данных. Данные мы получаем чтением 24 бита. Если продолжить формирование SCLK, то задний фронт 26-го SCLK начинается цикл калибровки. Дополнительные импульсы SCLK могут быть отправлены после 26 SCLK, однако, активность на шине SCLK должны быть сведены к минимуму, во время калибровки смещения, для достижения наилучших результатов. В течение выполнения функции калибровки, аналоговые входные контакты отсоединены от входов АЦП и соответствующий сигнал подается внутри, чтобы выполнить калибровку. Когда калибровка завершена, DRDY/DOUT переходит в низкий уровень, что указывает, что новые данные готовы. Первое преобразование после калибровки содержит достоверные данные.
Стандартная схема подключения АЦП к мосту датчика для измерения веса.
Вариант подключения АЦП к PIC24FJ64GA004.
Подключение будет выполнено к SPI2
void init_spi2 (void) // настройка SPI2 /* настраивается только на приём данных * данные с АЦП */ { /* SPI2 - настройка для работы с входным усилителем и индикатором * PPRE * 11 = Primary prescale 1:1 * 10 = Primary prescale 4:1 * 01 = Primary prescale 16:1 * 00 = Primary prescale 64:1 * SPRE * 111 = Secondary prescale 1:1 * 110 = 2 * 101 = 3 * 100 = 4 * 011 = 5 * 010 = 6 * 001 = 7 * 000 = Secondary prescale 8:1*/ // RPOR4bits.RP9R=0b01001; // SPI2 Slave Select Output//CS // RPOR6bits.RP12R=0b01010; // SPI2 Data Output RPINR22bits.SDI2R = 20; // SPI2 Data Input - RP20/ нога 37 RPOR10bits.RP21R=11; // SPI2 Clock Output SPI2STATbits.SPIEN = 0; // выключить SPI2CON1 = 0b0000000000111001; //FCY/1/6=50/6=8,3 /* ||||||||||||||++--- PPRE<1:0>: настройка предделителя 1 11 = Primary prescale 4:1 * |||||||||||+++----- SPRE<2:0>: настройка предделителя 2 111 = Primary prescale 8:1 * ||||||||||+-------- MSTEN: 1 = Режим ведущего, 0 = режим ведомого * |||||||||+--------- CKP:0 = пассивный уровень шины SCL 1- высокий, 0-низкий * ||||||||+---------- SSEN:Slave Select Enable bit (Slave mode) * |||||||+----------- CKE: смена бита данных происходит: 1-от активного в пассивное(синх-0/1)/0-пассивного в активное (синх-1/0) * ||||||+------------ SMP:0 = Input data sampled at middle of data output time * |||||+------------- MODE16: Communication is word-wide (8 bits) * ||||+-------------- DISSDO: 0-в работе * |||+--------------- DISSCK: 0-в работе * +++---------------- не используются */ SPI2CON2 = 0b0000000000000000; /* |||||||||||||||+--- не используется * ||||||||||||||+---- FRMDLY: * |||+++++++++++----- не используются * ||+---------------- FRMPOL: * |+----------------- SPIFSD: * +------------------ FRMEN: */ SPI2STAT = 0b1000000000000000; /* |||||||||||||||+--- SPIRBF: Флаг приемного буфера 1 - данные приняты 0- прием выполняется SPI2RXB пуст * ||||||||||||||+---- SPITBF: Флаг передатчика 1 - передача не началась (буфер полон), 0 - передача началась буфер пуст (устанавливается сбрасывается аппаратно) * ||||||||||++++----- не используются * |||||||||+--------- SPIROV: 1 - произошло переполнение 0 - нет переполнения премного буфера. * |||++++++---------- не используются * ||+---------------- SPISIDL: режим работы в состоянии ожидания 0 - работает 1 - отключен модуль * |+----------------- не используется * +------------------ SPIEN: 1 - модуль включен 0 - выключен. */ SPI2STATbits.SPIEN = 1; // БИТ Включить - должен быть активирован последним, чтобы вступили в действии все изменения. }
Сама обработка данных и синхронизация выполняется через прерывания по входу через которые на SPI2 поступают данные. Настройка прерывание:
void ADCIZ (void)// включить измерение { ADCVMOSST=1; // подать питание на датчик ADCPDWN=1; // включить ADC CNEN2bits.CN25IE=1; // разрешить прерывание по входу _CNIF = 0; // сбросить прерывание _CNIE = 1; // включить прерывание }
Первые две строчки это если есть необходимость в управлении подачей питания на измерительный мост и управления режимом “слип” АЦП. Следующие три строки это настройка режима прерывания по входу через который АЦП получает данные.
Получение данных происходит через функцию прерывания:
void __attribute__((interrupt, auto_psv)) _CNInterrupt (void) { unsigned long datain; _LATB2=!_LATB2; // индикация работы АЦП while(PORTCbits.RC4); // ожидать низкого уровня на входе SPI2BUF=0; // запуск чтения while(!SPI2STATbits.SPIRBF); // ожидать загрузки буфера datain=SPI2BUF; ADCbufer[ucazad]=datain<<16; // загрузка данных в буфер, сброс бита SPIRBF SPI2BUF=0; // запуск чтения while(!SPI2STATbits.SPIRBF); // ожидать загрузки буфера datain=SPI2BUF; ADCbufer[ucazad]+=datain<<8; // загрузка данных в буфер, сброс бита SPIRBF SPI2BUF=0; // запуск чтения while(!SPI2STATbits.SPIRBF); // ожидать загрузки буфера datain=SPI2BUF; ADCbufer[ucazad++]+=datain; // загрузка данных в буфер, сброс бита SPIRBF if(ucazad==filtrADC)ucazad=0; // инициализация указателя. //калибровка if(Bit.calADC) // если установлен выполнить калибровку { Bit.calADC=0; // сбросить флаг калибровки SPI2BUF=0; // while(!SPI2STATbits.SPIRBF); // ожидать загрузки буфера datain=SPI2BUF; // сброс бита SPIRBF } _CNIF = 0; // сброс прерывания }
Флаг Bit.calADC – предназначен для активирования режима калибровки. Данные загружаются в буфер ADCbufer[] размер которого может быть ограничен переменной filtrADC.
Это может быть интересно
- Регулятор влажностиViews: 1389 Регулятор ILLISSI-CH-1000 предназначен для контроля и регулировки относительной влажности в диапазоне от 0 до 100%. Регулятор позволяет работать как в режиме осушения, так и увлажнения. Для измерения возможно …
- BMP280 – температура и атмосферное давление – учебный проектViews: 2062 Учебный проект на PIC32 и светодиодной панели P5 (2121)-168-6432-80 (32*64). Проект позволяет ознакомиться с простой графикой и с чтением давления и температуры с датчика BMP280. Для тестирования необходимо …
- Проект с использованием MCC часть 16Views: 1089 Продолжим изучение EUSART. На этом этапе отработает передачи данных с ПК и получения эха. Для этого в основной цикл программы добавим код if(EUSART_DataReady) // проверим флаг готовности данных …
- LED модуль P10 (1R) V706AViews: 7709 Это еще одно чудо от китайского брата. Это монохромные матрицы, называются они P10 (1R) V706A, ну типа R-красные, но не верьте паяют светики и зеленые и синие, в общем …
- LCD драйвер – UC1601sViews: 1623 http://svetomuzyka.narod.ru/project/UC1601s.html Читайте обновление на http://catcatcat.d-lan.dp.ua/?page_id=178 В данный момент можно приобрести в ООО “Гамма” несколько типов индикаторов на драйвере UC1601s. RDX0048-GC, RDX0077-GS, RDX0154-GC и RDX0120-GC выполнены по технологии COG.
- USB K-L-line адаптерViews: 5989 USB K-L-line адаптер предназначен для связи персонального компьютера с диагностической шиной автомобиля – интерфейс ISO-9141. Этот проект предназначен для сборки недорого устройства с использованием специально для этой цели …
- Обновление ESP8266 c ESPFlashDownloadTool_v3.6.3Views: 3489 Технология обновления следующая: Загружаем программу со страницы espressif.com. Разархивируем. Где находятся файлы, для прошивки? Заходим в каталоги Подключаем по схеме в статье WiFi ESP8266 (замыкаем BT2, перемычка). Запускаем программу, …
- Arduino LCD + STONE STVI056WT-01 + Strain gaugeViews: 460 Author li grey email: greyli1987@outlook.com The strain assessment instrument is used to assess the degree of corresponding muscle strain by obtaining the muscle surface action potential through silver …
- Ultrasonic Level Meters – ULM –53LViews: 721 Измерение расстояния при помощи ультра звукового датчика ULM–53L–10. Диапазон измерения от 0,5 м до 10 м, полностью пластмассовый излучатель PVDF, механическое соединение фланцем из полиэтилена HDPE (исполнение “N”) Характеристики …
- ESP32-первое знакомствоViews: 6520 Музыкальная тема к статье, слушаем: Настало время познакомиться c ESP32 и для меня, для этого я приобрел в ГАММЕ отладочную плату с модулем ESP-WROOM-32 (ESP32-DevKitC). Первая задача, как …