Views: 1148
АЦП ADS1230 – это 20 битный АЦП со скоростью измерения 10 или 80 раз в секунду. При подаче питания АЦП постоянно выполняет измерения. Данные можно получить с него по SPI шине. Максимальная тактовая частота шины до 1 мГц. Каждое измерение выполненное АЦП инициализируется самим АЦП по шине данных положительным импульсом. Чтение микроконтроллер должен начинать по получению отрицательного фронта.
Данные передаются старшим битом в перед для чтения 20 бит необходимо 3 байта. Данные выровнены влево.
Для чтения данных необходимо настроить SPI по отрицательному фронту синхроимпульсов.
Управляя количеством синхроимпульсов можно управлять функциями АЦП, одна из них это калибровка АЦП.
Калибровки смещения
Калибровка смещения может быть начата в любое время для компенсации в ADS1230 погрешности смещения. Чтобы начать калибровку смещения, необходимо по крайней мере, два дополнительных SCLKs после получения 20 бит данных. Данные мы получаем чтением 24 бита. Если продолжить формирование SCLK, то задний фронт 26-го SCLK начинается цикл калибровки. Дополнительные импульсы SCLK могут быть отправлены после 26 SCLK, однако, активность на шине SCLK должны быть сведены к минимуму, во время калибровки смещения, для достижения наилучших результатов. В течение выполнения функции калибровки, аналоговые входные контакты отсоединены от входов АЦП и соответствующий сигнал подается внутри, чтобы выполнить калибровку. Когда калибровка завершена, DRDY/DOUT переходит в низкий уровень, что указывает, что новые данные готовы. Первое преобразование после калибровки содержит достоверные данные.
Стандартная схема подключения АЦП к мосту датчика для измерения веса.
Вариант подключения АЦП к PIC24FJ64GA004.
Подключение будет выполнено к SPI2
void init_spi2 (void) // настройка SPI2 /* настраивается только на приём данных * данные с АЦП */ { /* SPI2 - настройка для работы с входным усилителем и индикатором * PPRE * 11 = Primary prescale 1:1 * 10 = Primary prescale 4:1 * 01 = Primary prescale 16:1 * 00 = Primary prescale 64:1 * SPRE * 111 = Secondary prescale 1:1 * 110 = 2 * 101 = 3 * 100 = 4 * 011 = 5 * 010 = 6 * 001 = 7 * 000 = Secondary prescale 8:1*/ // RPOR4bits.RP9R=0b01001; // SPI2 Slave Select Output//CS // RPOR6bits.RP12R=0b01010; // SPI2 Data Output RPINR22bits.SDI2R = 20; // SPI2 Data Input - RP20/ нога 37 RPOR10bits.RP21R=11; // SPI2 Clock Output SPI2STATbits.SPIEN = 0; // выключить SPI2CON1 = 0b0000000000111001; //FCY/1/6=50/6=8,3 /* ||||||||||||||++--- PPRE<1:0>: настройка предделителя 1 11 = Primary prescale 4:1 * |||||||||||+++----- SPRE<2:0>: настройка предделителя 2 111 = Primary prescale 8:1 * ||||||||||+-------- MSTEN: 1 = Режим ведущего, 0 = режим ведомого * |||||||||+--------- CKP:0 = пассивный уровень шины SCL 1- высокий, 0-низкий * ||||||||+---------- SSEN:Slave Select Enable bit (Slave mode) * |||||||+----------- CKE: смена бита данных происходит: 1-от активного в пассивное(синх-0/1)/0-пассивного в активное (синх-1/0) * ||||||+------------ SMP:0 = Input data sampled at middle of data output time * |||||+------------- MODE16: Communication is word-wide (8 bits) * ||||+-------------- DISSDO: 0-в работе * |||+--------------- DISSCK: 0-в работе * +++---------------- не используются */ SPI2CON2 = 0b0000000000000000; /* |||||||||||||||+--- не используется * ||||||||||||||+---- FRMDLY: * |||+++++++++++----- не используются * ||+---------------- FRMPOL: * |+----------------- SPIFSD: * +------------------ FRMEN: */ SPI2STAT = 0b1000000000000000; /* |||||||||||||||+--- SPIRBF: Флаг приемного буфера 1 - данные приняты 0- прием выполняется SPI2RXB пуст * ||||||||||||||+---- SPITBF: Флаг передатчика 1 - передача не началась (буфер полон), 0 - передача началась буфер пуст (устанавливается сбрасывается аппаратно) * ||||||||||++++----- не используются * |||||||||+--------- SPIROV: 1 - произошло переполнение 0 - нет переполнения премного буфера. * |||++++++---------- не используются * ||+---------------- SPISIDL: режим работы в состоянии ожидания 0 - работает 1 - отключен модуль * |+----------------- не используется * +------------------ SPIEN: 1 - модуль включен 0 - выключен. */ SPI2STATbits.SPIEN = 1; // БИТ Включить - должен быть активирован последним, чтобы вступили в действии все изменения. }
Сама обработка данных и синхронизация выполняется через прерывания по входу через которые на SPI2 поступают данные. Настройка прерывание:
void ADCIZ (void)// включить измерение { ADCVMOSST=1; // подать питание на датчик ADCPDWN=1; // включить ADC CNEN2bits.CN25IE=1; // разрешить прерывание по входу _CNIF = 0; // сбросить прерывание _CNIE = 1; // включить прерывание }
Первые две строчки это если есть необходимость в управлении подачей питания на измерительный мост и управления режимом “слип” АЦП. Следующие три строки это настройка режима прерывания по входу через который АЦП получает данные.
Получение данных происходит через функцию прерывания:
void __attribute__((interrupt, auto_psv)) _CNInterrupt (void) { unsigned long datain; _LATB2=!_LATB2; // индикация работы АЦП while(PORTCbits.RC4); // ожидать низкого уровня на входе SPI2BUF=0; // запуск чтения while(!SPI2STATbits.SPIRBF); // ожидать загрузки буфера datain=SPI2BUF; ADCbufer[ucazad]=datain<<16; // загрузка данных в буфер, сброс бита SPIRBF SPI2BUF=0; // запуск чтения while(!SPI2STATbits.SPIRBF); // ожидать загрузки буфера datain=SPI2BUF; ADCbufer[ucazad]+=datain<<8; // загрузка данных в буфер, сброс бита SPIRBF SPI2BUF=0; // запуск чтения while(!SPI2STATbits.SPIRBF); // ожидать загрузки буфера datain=SPI2BUF; ADCbufer[ucazad++]+=datain; // загрузка данных в буфер, сброс бита SPIRBF if(ucazad==filtrADC)ucazad=0; // инициализация указателя. //калибровка if(Bit.calADC) // если установлен выполнить калибровку { Bit.calADC=0; // сбросить флаг калибровки SPI2BUF=0; // while(!SPI2STATbits.SPIRBF); // ожидать загрузки буфера datain=SPI2BUF; // сброс бита SPIRBF } _CNIF = 0; // сброс прерывания }
Флаг Bit.calADC – предназначен для активирования режима калибровки. Данные загружаются в буфер ADCbufer[] размер которого может быть ограничен переменной filtrADC.
Это может быть интересно
- Модуль CAN в микроконтроллерах PIC18Views: 5765 Введение CAN последовательный интерфейс связи, который эффективно поддерживает распределенное управление в реальном масштабе времени с высокой помехозащищенностью. Протокол связи полностью определен Robert Bosch GmbH, в спецификации требований …
- MPLAB® Harmony – или как это просто! Часть 3.Views: 2091 Часть третья – копнём немного глубже. Вы наверное заметили, что во второй главе, вроде сначала все шло как по маслу, а потом, что бы заморгали светики, я вставил …
- Гаджеты для домашней автоматики – Датчик движенияViews: 1452 Управление светодиодным освещением – Датчик движения. Данный гаджет предназначен для управления освещением рабочих столов (кухонных столов), освещение прихожих, освещение зеркал в прихожих, автоматическое включение света в коридорах. Датчик позволяет …
- Простой оптический сенсор приближенияОптический сенсор, назначение оптический концевик, для автоматики, бесконтактный выключатель с функцией автоматического отключения...
- NeoPixel LED and PIC24Views: 646 Популярность однопроводной шины для управления светодиода типа WS2812 не ослабевает, а новые типы светодиодов в корпусах 3,5*3,5мм, 2,0*2,0мм становяться все больше привлекательными. Построение дисплеев для анимации требуют все …
- WiFi ESP8266 ESP-202 (ESP-12F)Views: 7698 Первое знакомство, сначала надо его купить… http://voron.ua/catalog/024404 Схема для подключения и тестирования По схеме ставим две кнопки, сброс и кнопку BT2, для перевода в режим обновления прошивки. Если надо сделать …
- Часы-кухонный таймерViews: 4064 Каждая кухня должна иметь кухонный таймер, который позволяет напоминать хозяйке когда проходить определенный промежуток времени. Например, печем пирог, варим яйца… , чтобы не смотреть постоянно на часы, установим таймер и …
- Проект с использованием MCC часть 01Views: 2544 Для изучения MCC я выбрал простой контроллер PIC16F1509. Выбор его был обусловлен богатой новой периферией которую можно изучить. Для начала была собрана схема на макетной плате Внешний вид …
- LCD драйвер – UC1601sViews: 1621 http://svetomuzyka.narod.ru/project/UC1601s.html Читайте обновление на http://catcatcat.d-lan.dp.ua/?page_id=178 В данный момент можно приобрести в ООО “Гамма” несколько типов индикаторов на драйвере UC1601s. RDX0048-GC, RDX0077-GS, RDX0154-GC и RDX0120-GC выполнены по технологии COG.
- Проект с использованием MCC часть 05Views: 1943 Эту часть назовем так как избавься от delay, там где а это реально не надо. Для это нам потребуется научиться использовать прерывания и работать с таймерами. Что такое …