Изучаем изготовление емкостных сенсоров на PIC-микроконтроллере.

Конструкция емкостных сенсоров имеет вид:ch-0060-svreg-03

Емкостные сенсоры строятся по схеме высокочастотного генератора, сам принцип основан на измерение частоты этого генератора. Частота зависит от емкости подключенной к управляющему входу.

Блок схема

Catcatcat_ES_01

В контроллерах последних разработок имеется модуль Timer1 Gate Control Logic который может полностью автоматизировать функции измерения частоты или длительности импульса. Таймером TMR0 задается время измерения. Модуль контроля управляет измерением. Таймер TMR1 используется для измерения частоты.

Принцип работы емкостного сенсора с использование управляемого генератора. Генератор через аналоговый коммутатор подключается к сенсору. В зависимости от пита микроконтроллера доступно разное количество выводов. В зависимости от физических размеров сенсора и окружающего пространства, на выходе будет получена соответствующая частота. Частоту можно регулировать в зависимости от тока который можно задавать в регистре CPSCON0 битами CPSRNG<1:0> в нашем контроллере можно задать ток 01-0,1/10-1,2/11-18 мкА.

Принцип чем больше размер сенсорной площадки или необходима большая чувствительность (без прикосновения) – делаем ток больше, если необходимо уменьшить чувствительность или сенсорная площадка маленькая уменьшаем. Больший ток позволяет увеличивать частоту сенсора, меньший уменьшает. Большая сенсорная площадка соответственно уменьшает частоту и естественно будет уменьшена сама чувствительность сенсора. Маленький сенсор может генерировать очень большую частоту, что может вызывать переполнение таймера который отвечает за измерение частоты.

Нужно понимать, что в зависимости от окружающей среды сам генератор не может генерировать, точно определенную частоту, частота может иметь небольшую девиацию. Нам необходимо измерять эту частоту и вычислить среднее её значение.

Catcatcat_ES_02

Среднее значение не будет естественно иметь прямой линии, оно будет иметь во времени некоторую кривую которая будет изменяться от окружающей среды. Скорость “подстройки” уровня средней частоты зависит от коэффициента усреднения – который задается в программе. О него будет зависит как быстро сенсор будет выходить в рабочий режим после включения. Но при этом “сглаживание” будет низкое. При этом надо выбирать компромисс.

При прикосновению к сенсору – емкость сенсора увеличивается, при этом частота уменьшается и мы будем иметь следующий вид:

Catcatcat_ES_03

Для определения нажатия сенсора необходимо ввести еще два параметра это ПОРОГ и ГИСТЕРЕЗИС. ПОРОГ предназначен для задания уровня при понижении частоту ниже которого мы будем считать, что сенсор “сработал”: Catcatcat_ES_04 Но просто задать порог недостаточно для уверенного срабатывания сенсора. Необходимо дополнительно ввести гистерезис, что даст возможность ввести режим триггера и формировать на выходе стабильные уровни при касании. Catcatcat_ES_05   Надеюсь приведенные рисунки поясняют принцип работы емкостного сенсора.


Для начала как настроить микроконтроллер для работы с емкостными сенсорами.

  1. Для начала выводы к которым должны подключаться сенсора необходимо сделать аналоговыми, например для микроконтроллера PIC16F1826 это необходимо выполнить так (см. схему)
  2. Настроить таймер T0 для формирования интервалов измерений
  3. Настроить таймер T1 для измерение частоты
  4. Настроить генератор сенсоров
  5. Для работы сенсора мы должны определить базовое значение  sen – это та частота которую генерирует сенсор когда нет прикосновение. Как это сделать? Естественно мы не будем её измерять, так как она может измениться от состояния внешней среды, это значение должно постоянно корректироваться во время работы сенсора. Для этого мы будем измерять текшую частоту сенсора и вычислять среднее значение. Для того, чтобы не путаться и не “растрачивать” сенсор, в момент прикосновения подстройка частоты будет блокироваться на необходимое нам время. Я установил 30 секунд. Для чего это необходимо? Я считаю, что для управления устройством, длительность проникновение не должна превышать 30 секунд (чаще достаточно долей секунды). Если состояние сенсора “включено” будет не более 30 секунд, то он будет работать как обычно, но если прикосновение будет выше 30 секунд, то это будет расценено как изменение внешних условий и автоматически уровень “выключено” перестроиться под создавшиеся условия. Для такого режима работы у нас не будет “болеть голова”  если необходимо будет использовать сенсоры с разными характеристиками. Сама программа автоматически правильно настроить его работу. Основанной функцией есть программа вычисление среднего значения. Она работает следующим образом. Имеются старое и новое значение параметра. При получении нового значения из старого вычитается процент от его величины и изменяется старое значение. Из нового значения извлекается такой же процент и прибавляется к старому значению.

  6. Все остальное просто дело логики. Вкратце измеряем частоты формируемые каждым сенсором, записываем их в массив. Обрабатываем и получаем уровни состояния отключено (более подробно смотри программу).
  7. Следующие два параметра это ПОРОГ и ГИСТЕРЕЗИС они естественно подбираются из практики, но никогда не вызывают проблем. Порог это величина изменения частоты ниже которого порога сенсор расценивает, что осуществилось прикосновение. Гистерезис это та величина которая необходима для стабильности переключения. Главная особенность ГИСТЕРЕЗИС  < ПОРОГ. На практике в два, четыре раза меньше. Порог это чувствительность сенсора чем меньше порог тем выше его чувствительность, можно так настроить, что сенсор будет срабатывать не от прикосновения, а от приближения руки. Гистерезис это параметр устраняющий неопределенность, если при прикосновении сенсор ведет себя нестабильность, то его надо увеличить. Вот И вся примостить. В примере для тестирования для режима “объемного контроля” выбрана величина Порог – 30, гистерезис 5. Смотрите демонстрационное видео, размеры сенсоров выбраны большими специально для демонстрации возможности программы подстроиться от даже такой вариант. Режим работы для бесконтактного управления, очень удобен когда нет необходимости к чему-то прикасаться.
  8. Демонстрация режима без прикосновения.
  9. Перевести в режим прикосновения можно двумя способами: это уменьшить рабочий ток генератора или увеличить порог. Все эти параметры необходимо подбирать отдельно для конкретной конструкции. Ниже вариант видео для значения порога 200. т.е. диапазон чувствительности очень вели у может удовлетворить любые запросы. По толщине пластика можно не “заморачиваться”, сенсоры могут работать через довольно большие толщины, тестировались до 20 мм, все нормально работало. В видео акрил толщиной 3 мм.
  10. Режим на прикосновение.
  11. ОБРАТИТЕ ВНИМАНИЕ программе надо несколько секунд после включения для настройки сенсоров.
  12. Мы уже описали два два режима работы сенсора, без прикосновения и с прикосновением, эти режимы отличаться только настройкой чувствительности. Но возможно в программах потребуется режим когда будет необходимо получить не только состояние “вкл/выкл”, но и данные от расстояния до сенсора.  Этот вариант, так же возможен при реализации такого рода сенсоров.
  13. Для демонстрации приведем проект сенсор который может определять направление ускорения с каким мы прикасаемся к нему. При помощи такого сенсора можно формировать команды в зависимости от того как вы к нему прикасаетесь.
  14. Видео контроль скорости приближения.

Все эксперименты проводились на следующей схеме:


Схема для изучения es_catcatcat_01

Удачного творчества! проект легко перенести на другой тип контроллера.


Проект MPLABX v2.00, компилятор MPLAB® XC8 Compiler v1.30 

Проект фокус с измерения  контроль скорости приближения


Это может быть интересно


  • MPLAB® Harmony – или как это просто! Часть 3.MPLAB® Harmony – или как это просто! Часть 3.
    Часть третья – копнём немного глубже. Вы наверное заметили, что во второй главе, вроде сначала все шло как по маслу, а потом, что бы заморгали светики, я вставил в код …
  • AD9833 – Programmable Waveform Generator – part twoAD9833 – Programmable Waveform Generator – part two
    Прошло время и появилась тема, что-бы закончить проект AD9833 – Programmable Waveform Generator. Приехали печатные платы. В этот раз я печатные платы заказывал в https://jlcpcb.com/ делал это в первый раз …
  • WiFi ESP8266 – AT команды связанные с функцией Wi-FiWiFi ESP8266 – AT команды связанные с функцией Wi-Fi
    AT команды связанные с функцией Wi-Fi Функции Wi-Fi подключения, запускаться из командной строки Команда Описание  1 AT+CWMODE Проверка, настройка режима работы Wi-Fi (sta/AP/sta+AP), (не рекомендуется для новых проектов). 2 AT+CWMODE_CUR Проверка, …
  • Просто о структурах и объединениях в СиПросто о структурах и объединениях в Си
    Какие задачи нам позволяют решать структуры и объединения? Для разработчика встроенных систем эффективность и компактность кода всегда на первом месте. Если программировании на Ассемблере ты сам определяешь как и где …
  • I2C MODULE – PIC18F25K42 Device ID Revision = A001I2C MODULE – PIC18F25K42 Device ID Revision = A001
    I2C MODULE Обход ошибок в версии I2C MODULE – PIC18F25K42 Device ID Revision = A001 В Серии K42 применен совершенно новый модуль шины I2C, который позволяет поддерживать все режимы этой …
  • AD9833 – Programmable Waveform GeneratorAD9833 – Programmable Waveform Generator
    Простой генератор звуковых частот на AD9833. Для тестирования БПФ в светомузыке мне нужен был генератор звуковых частот. Я  использовал советский Г3-112, но он себя давно изжил.  Все думал купить чёто такое …
  • Trimax – кодирование и декодирование ИК-командTrimax – кодирование и декодирование ИК-команд
    Первое, что надо понять назначение кнопок клавиш пульта, а также, что за кодирование реализовано в ИК- пульте. Для назначения клавиш обратимся к описанию, а для взлома кодирования воспользуемся старым и …
  • DS18B20 – удаленный контроль температурыDS18B20 – удаленный контроль температуры
    Плата в корпусе Датчики температуры DS18B20 Схема подключения Вывод данных на ПК Установка дополнительных резисторов Назначение выводов This jQuery slider was created with the free EasyRotator for WordPress plugin from …
  • Мониторинг температурыМониторинг температуры
    Настоящий проект создан как обучающий с применением библиотек ds18b20 и LCDHD44780 и компилятора Microchip MPLAB XC8 C Compiler V1.12. Если необходимо иметь информацию по состоянию температуры в помещении или в здании, с количеством до 6 точек (16), то вы сможете …
  • Акриловый корпус для платы ch-4000Акриловый корпус для платы ch-4000
    Плата ch-4000 подходит для монтажа в корпуса на дин рейку, но для домашней автоматики необходимо что-то другое, поэтому был разработан корпус из акрила который позволит создавать настольные и настенные устройства. Корпус состоит из …



Tagged with →  
Share →
Translate »

Copyright © Catcatcat electronics 2013-2019. Все права защищены.
Копирование разрешается только с указанием активной ссылки на правообладателя.

e-mail: catcatcat.electronics@gmail.com