BMP280 – температура и атмосферное давление – учебный проект

Views: 2148


Учебный проект на PIC32 и светодиодной панели P5 (2121)-168-6432-80 (32*64).

Проект позволяет ознакомиться с простой графикой и с чтением давления и температуры с датчика BMP280.

Для тестирования необходимо собрать следующую схему.

Схему в формате pdf можно скачать внизу страницы.

Для тестирования используется модуль приобрести его можно как всегда у китайцев.

Датчик позволяет измерять окружающую температуру и атмосферное давление.

Для разработки будем использовать библиотеку графики от Catcatcat и библиотеку от BOSCH для датчика BMP280. Библиотеку для графики можно скачать внизу статьи, а библиотеку для датчика вот отсюда /BMP280_driver.

 

Выберем Harmony проект

Зададим папку проекта и имя проекта.

Настроим на наш микроконтроллер и установим кодовую страницу проекта, от которой страницы будут зависит формируемые коды символов.

Кодовая страница.

Настроим выбор микроконтроллера, версию компилятора, тип дебаггера

Для работы библиотеки графики для светодиодного модуля необходимо настроить порты микроконтроллера и включить таймер для формирования периода для формирования развертки на дисплее.

Перейдем в закладки опции и настроим работу таймера. Сначала зайдем в System Services и активируем системный таймер.

Откроем раздел Драйверы и настроем для управления разверткой дисплея таймер 2. Режим статический, таймер 2, предделитель на 64, период 500.

 

Запустим генерацию проекта

Будут с регенерированы основные файлы проекта.

Следующий этап добавим библиотеку графики для светодиодного модуля. Добавления выполним классическим образом. Нам необходимо взять папку DRIVER_HUB75 содержащую драйвер для формирования изображения на светодиодных модулях, и папку GRAPHICS_HUB75 с функциями графики и добавим в наш проект.

Я это делаю так, в папке проекта, создаю папку с именем ch_lib, вней я храню все свои библиотеки.

В неё добавим наши библиотеки.

Теперь подключим библиотеки к нашему проекту. Сначала добавим рабочие файлы.

Добавим каталог с нашей библиотекой.

В структуре проекта появиться каталог с библиотеками.

Теперь аналогичным образом добавит заголовки библиотек.

После добавления папки заголовков будут пустые, необходимо дополнительно добавить заголовки каждый в свой каталог.

Файл заголовок драйвера.

Файл заголовка графической библиотеки.

Теперь необходимо добавить драйвер в прерывания таймера, откроем файл прерываний.

 

Добавим в прерывания таймера 2 следующие строки.

void __ISR(_TIMER_2_VECTOR, ipl1AUTO) IntHandlerDrvTmrInstance0(void)
{
    Drive_hab75();                  // видео драйвер
    
    if(timer_tact1>0)timer_tact1--; // таймер скорости бегущей реки
    if(timer_tact2>0)timer_tact2--; //
    
    PLIB_INT_SourceFlagClear(INT_ID_0,INT_SOURCE_TIMER_2);
}

Для подключения достаточно добавить заголовок библиотеки графики, описание на драйвер в ней уже есть.

//------------------------------------------------------------------------------
#include "../ch_lib/GRAPHICS_HUB75/graphics.h"  // библиотека графики
//------------------------------------------------------------------------------

Теперь можно протестировать вывод изображения на дисплей. Для этого откроем файл app.c.

Добавим заголовок библиотеки графики.

//------------------------------------------------------------------------------
#include "../ch_lib/GRAPHICS_HUB75/graphics.h"
//------------------------------------------------------------------------------

И в Функцию void APP_Tasks ( void ) в case APP_STATE_SERVICE_TASKS: бегущую строку с надписью, что даст нам возможность опробовать работу функций вывода изображения на дисплей.

        case APP_STATE_SERVICE_TASKS:
        {
        
            Scrolling2("Температура и давление, от Catcatcat electronics!", 5, 1, 53, 2, 1, 1, 100, Fuchsia, Black);
            
            break;
        }

Загрузим проект и проверим работу графики.

Дополнительно добавим прорисовку прямоугольников, для красоты со случным выводом цвета. Для этого подключим библиотеку stdlib.h  для функции rand. И добавим  строки.

            if(++f>3000000)
            {
                f=0;
                
                Rectangle( 0,  0,  1,  1,   5,  20,  8,  8, rand()%7, rand()%7);
                Rectangle( 0,  0,  1,  1,  15,  20,  8,  8, rand()%7, rand()%7);
                Rectangle( 0,  0,  1,  1,  25,  20,  8,  8, rand()%7, rand()%7);
                Rectangle( 0,  0,  1,  1,  35,  20,  8,  8, rand()%7, rand()%7);
            }

У вас должно быть изображение:

Вверху каждые две секунды 4 квадрата с изменяющимся цветом, внизу бегущая строка.

Для работы с датчиком BMP280 нам необходимо активировать I2C модуль. Для этого перейдем в конфигуратор и настроим порты для пятого модуля I2C.

Активируем модуль. Статический режим, модель передача буфера данных, модуль 5 скорость 100 кб.

Выполним генерацию проекта.

Подключим библиотеку от Bosch для датчика BMP280.

Для этого скачаем файлы как это описано в начале статьи и добавим библиотеку в проект для этого скопируем каталог BMP280, в папку Bosch нашего проекта.

Добавим библиотеку в проект, ка это делалось ранее.

Библиотека требует промежуточных файлов для связи с модулем I2C. Для этого надо создать три функции.

Функция задержки:

void delay_ms(uint32_t period_ms)
{
    /* Реализуйте процедуру задержки в соответствии с целевой машиной */
    time_delayi = 3*period_ms;        // функция задержки 1 ms
    while (time_delayi);    //
}

Нужна функция записи.

int8_t i2c_reg_write(uint8_t i2c_addr, uint8_t reg_addr, uint8_t *reg_data, uint16_t length)
{
    bufer.adress = reg_addr;
    memcpy(bufer.bufer,reg_data,length);
    DRV_I2C0_Transmit (i2c_addr<<1, &bufer, length+1, 0);
    delay_ms(2);
    return 0;
}

Для функции записи опишем структуру.

typedef struct 
{
    uint8_t adress;             // адрес старший байт
    uint8_t bufer[100];         // буфер данных для передачи
}_bufer;                        //

И функцию чтения.

int8_t i2c_reg_read(uint8_t i2c_addr, uint8_t reg_addr, uint8_t *reg_data, uint16_t length)
{
static uint8_t  reg_addrr;
    reg_addrr = reg_addr;
    DRV_I2C0_TransmitThenReceive(i2c_addr<<1,&reg_addrr,1,reg_data,length,0);
    delay_ms(2);
    return 0;
}

Создадим промежуточную библиотеку, назовем её например bmp280_in. Добавим файлы в проект.

В итоге мы должны получить следующую структуру проекта.

Для запуска работы датчика необходимо в начале выполнить процедуру инициализации, после чего можно считывать данные температуры и давления. Датчик может преобразовывать отдельно температуру и давление или выполнять обо преобразования одновременно, в зависимости от как эффективно и точно необходимо получать данные, могут быть заданы разнообразные режимы работы.

В конце стать есть частичный передо описания датчика, в котором можно более подробно получить описание датчика и его возможности.

Подключим наши библиотеки в файле app.c

#include "../Bosch/BMP280/bmp280.h"         // Библиотека Bosch для датчика bmp280
#include "../ch_lib/BMP280_IN/bmp280_in.h"  // Связывающие драйвера

Добавим промежуточные переменный и структуры для обработки данных.

struct bmp280_dev bmp;
struct bmp280_config conf;
struct bmp280_uncomp_data ucomp_data;
uint32_t tempI, presI;

А также последовательность инициализации и индикации температуры и давления.

                if(!flag)
                {
                    /* Сопоставьте указатель функции задержки с функцией, ответственной за реализацию задержки */
                    bmp.delay_ms = delay_ms;
                    /* Присвойте устройству адрес I2C в зависимости от состояния SDO pin (GND for PRIMARY(0x76) & VDD for SECONDARY(0x77)) */
                    bmp.dev_id = BMP280_I2C_ADDR_PRIM;
                    /* Выберите режим интерфейса как I2C */
                    bmp.intf = BMP280_I2C_INTF;
                    /* Сопоставьте указатель функции чтения и записи I2C с функциями, отвечающими за передачу шины I2C */
                    bmp.read = i2c_reg_read;
                    bmp.write = i2c_reg_write;
                    /*инициализация модуля*/
                    bmp280_init(&bmp);
                    /* Обязательное чтение текущих настройк перед записью, особенно когда все настройки не изменены */
                    bmp280_get_config(&conf, &bmp);
                    /* настройка передискретизации температуры, коэффициента фильтра и скорости передачи данных на выходе */
                    /* Коэффициент фильтра*/
                    conf.filter = BMP280_FILTER_COEFF_2;
                    /* Передискретизация давления установлена на 4x */
                    conf.os_pres = BMP280_OS_4X;
                    /* Передискретизация температуры установлена на 4x */
                    conf.os_temp = BMP280_OS_4X;
                    /* Отключение измерения теперературы или давления */
            //        conf.os_pres = BMP280_OS_NONE;
            //        conf.os_temp = BMP280_OS_NONE;
                    /* Установка скорости передачи данных на выходе 1HZ(1000ms) */
                    conf.odr = BMP280_ODR_1000_MS;
                    /* Конфигурирование модуля */
                    bmp280_set_config(&conf, &bmp);

                    /* Всегда устанавливайте режим питания после настройки конфигурации */
                    bmp280_set_power_mode(BMP280_NORMAL_MODE, &bmp);

                    flag=1;
                }
    
                /* Чтение необработанных данных с датчика */
                bmp280_get_uncomp_data(&ucomp_data, &bmp);

                /* Получение компенсированного давления с использованием 32-битной точности */
                presI = bmp280_comp_pres_32bit(ucomp_data.uncomp_press, &bmp);
                presI = presI*0.00750063755419211;//1 паскаль [Па] = 0,00750063755419211 миллиметр ртутного столба (0°C) [мм рт.ст.]

                /* Получение 32-битной скомпенсированной температуры */
                tempI = bmp280_comp_temp_32bit(ucomp_data.uncomp_temp, &bmp);
                tempI = tempI/10;
                /*Индикация параметров*/
                Cursor (1, 10);
                BinDec(tempI, 2, 0, 3, 1, 1, White, Black);
                Symbol(0xBF, 1, 0, 1, 1, Red, Black);
//                Symbol('C', 1, 0, 1, 1, White, Black);
                Cursor (34, 10);
                BinDec(presI, 0, 0, 3, 1, 1, Green, Black);
                StringCur("mm", 1, 0, 1, 1, Yellow, Black);
//              bmp.delay_ms(1000); /* Время сна между измерениями = BMP280_ODR_1000_MS */
//              delay_ms(2000);
            }

Дополнительно необходимо подключить в прерывания таймера 2 управление задержкой для функции delay_ms(uint32_t period_ms).

void __ISR(_TIMER_2_VECTOR, ipl1AUTO) IntHandlerDrvTmrInstance0(void)
{
    Drive_hab75();                  // видео драйвер
    
    if(timer_tact1>0)timer_tact1--; // таймер скорости бегущей реки
    if(timer_tact2>0)timer_tact2--; //
    
    if(time_delayi>0) time_delayi--;// фунция задержки для bmp280
    
    PLIB_INT_SourceFlagClear(INT_ID_0,INT_SOURCE_TIMER_2);
}

С компилируем проект и загрузим в микроконтроллер.


В результате получим следующий результат бегущая строка и индикация температуры и атмосферного давления.


Значок

BMP280 - учебный проект - схема 390.60 KB 610 downloads

Схема проекта в pdf. ...

Пароль на архив Catcatcat.

Значок

BMP280 - учебный проект - проект 465.53 KB 3 downloads

Проект MPLABX, библиотека графики, драйвер для светодиодной...
Login Required Message:

Это может быть интересно


  • Real-time music visualization technologyReal-time music visualization technology
    Views: 224 Music visualization technology in real time (RTMV-technology). Я не музикант і я не маю спеціальної музичної освіти, я інженер розробник вбудованих систем. Але моє хобі розроблення технології візуалізації …
  • Проект с использованием MCC часть 07Проект с использованием MCC часть 07
    Views: 1114 Модуль PWM – широтно импульсная модуляция (ШИМ). ПИК контроллеры часто на борту имеют модули ШИМ. На их основе строятся многие узлы управления электро приводами. В нашем варианте мы …
  • NeoPixel LED и PIC18NeoPixel LED и PIC18
    Views: 1785   Еще раз об управлении светодиодами на драйвере WS2812 и ему подобных. Как известно эти светики управляются по однопроводной шине. Основная особенность, что программно можно описать передачу данных, …
  • CCP – модуль в режиме Compare на примере PIC18CCP – модуль в режиме Compare на примере PIC18
    Views: 3127 CCP – модуль можно использовать в трех режимах: Capture – позволяет захватывать входной сигнал и определять его параметры (длительность или частоту). Дополнительно управлять внутренними модулями. Compare –  позволяет …
  • Ссылки на интересные источникиСсылки на интересные источники
    Views: 909 Сбор 3D моделей от André L’Hérault конденсаторы, резисторы, индуктивности dropbox IPC-SM-782 Surface Mount Design and Land Pattern Standard Видео уроки по Altium designer Alexey Sabunin https://www.youtube.com/channel/UCG7N5CqXpyK8nQjr1EmMgng Сергей Булавинов https://www.youtube.com/channel/UCISAMXRnN_Qw9UTjUwZI1Jw Robert Feranec https://www.youtube.com/user/matarofe …
  • УКВ – радиоприем, часть 2УКВ – радиоприем, часть 2
    Views: 6339 Пришло свободное время решил вторую часть проекта реализовать (правда есть мысль и третью с использование цветного OLED и функцией ch-светомузыки, но это только задумка… Для понимания функций интегрального …
  • Проект с использованием MCC часть 15Проект с использованием MCC часть 15
    Views: 1654 EUSART – Универсальный асинхронный приёмопередатчик (УАПП, англ. Universal Asynchronous Receiver-Transmitter, UART) — узел вычислительных устройств, предназначенный для организации связи с другими цифровыми устройствами. … читать на вики. Внесем изменения в нашу схему, …
  • MCC – K42 – настройка модуля DMAMCC – K42 – настройка модуля DMA
    Views: 851 MCC – в версии v.3.95.0 и начиная ядра 4.85.0 конфигуратор предоставляет графический интерфейс для настройки модуля DMA. Для начала: Посмотреть какая версия МСС можно в закладке версии, если …
  • PIC32MZ – прерывания (заметки)PIC32MZ – прерывания (заметки)
    Views: 495 Виды формирования запоминая контекста при входе в прерывания. Компилятор представляет три варианта AUTO – когда запоминания места возврата из подпрограммы возложено на программу, т.е все создается программно. Этот …
  • Простой цифровой милливольтметр постоянного токаПростой цифровой милливольтметр постоянного тока
    Views: 4156 Простой цифровой вольтметр постоянного тока. Три диапазона измерений с автоматическим переключением 1 – 0,001 – 0,999 V, 2 – 0,01-9,99 V, 3 – 0,1-99,9. Четыре управляемых выхода с возможностью задания функции контроля …



 

Поделись этим!

Catcatcat

catcatcat

Development of embedded systems based on Microchip microcontrollers.

Продолжайте читать

НазадДалее

Комментарии

Добавить комментарий

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.