HVLD модуль на примере PIC24FJ128GA204

Views: 640


HVLD модуль представляет собой простое устройство, для контроля напряжения питания микроконтроллера или внешнего напряжения (через делитель). Его задача при “выходе” напряжения за заданные пределы сформировать сообщение микроконтроллеру, что необходимо выполнить соответствующие действия. Часто этот модуль необходим, чтобы выполнить обработку аварийных ситуаций при пропадании напряжения питания.

В микроконтроллере PIC24FJ128GA204 есть возможность получения аналогового сигнала с внешнего делителя, но есть микроконтроллеры, в котором этот вход отсутствует, и возможен контроль только самого напряжения питания микроконтроллера. Внешний вход позволяет значительно расширить контроль напряжения питания, можно вывести контроль на входное напряжение до стабилизатора и на раннем этапе обнаружить понижение напряжения и раньше начать выполнять процедуру остановки системы.

Модуль имеет один регистр управления HLVDCON. Назначение бит следующее:

HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER
R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0
HLVDEN LSIDL
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0
VDIR BGVST IRVST HLVDL3 HLVDL2 HLVDL1 HLVDL0
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

bit 15 HLVDEN: бит включения питания модуля
1 = HLVD включен
0 = HLVD отключен

bit 14 Не реализовано: чтение дает ‘0’

bit 13 LIDL: бит работы модуля в режиме ожидания
1 = модуль отключен, когда устройство переходит в режим ожидания
0 = модуль продолжит работу в режиме ожидания

bit 12-8 Не реализовано: чтение дает ‘0’

bit 7 VDIR: Выбор направления изменения напряжения для формирования события
1 = Событие возникает, когда напряжение равно или превышает точку отключения (HLVDL <3: 0>)
0 = Событие возникает, когда напряжение равно или падает ниже точки отключения (HLVDL <3: 0>)

bit 6 BGVST: бит флага стабильности напряжения запрещенной зоны
1 = Указывает, что напряжение запрещенной зоны является стабильным
0 = Указывает, что напряжение запрещенной зоны является неустойчивым

bit 5 IRVST: бит флага стабильности внутренего источника опорного напряжения
1 = Внутреннее опорное напряжение является стабильным; логика High-Voltage Detect генерирует флаг прерывания на
заданный диапазон напряжения
0 = Внутреннее опорное напряжение неустойчиво; логика обнаружения высокого напряжения не приведет к прерыванию флаг в указанном диапазоне напряжений и прерывание HLVD не должно быть включено

bit 4 Не реализовано: чтение дает ‘0’

bit 3-0 HLVDL <3: 0>: бит ограничения обнаружения высокого / низкого напряжения
1111 = используется внешний аналоговый вход (вход поступает от выводов HLVDIN)
1110 = Точка отключения 1 (1)
1101 = точка отключения 2 (1)
*
*
*
1100 = точка срабатывания 3 (1)
0100 = Точка отключения 11 (1)
00xx = состояние не используется


HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS
Symbol Characteristic Min Typ Max Units
VHLVD HLVD Voltage on VDD
Transition
HLVDL<3:0> = 0100 3.45 3.59 3.74 V
HLVDL<3:0> = 0101 3.33 3.45 3.58 V
HLVDL<3:0> = 0110 3.0 3.125 3.25 V
HLVDL<3:0> = 0111 2.8 2.92 3.04 V
HLVDL<3:0> = 1000 2.7 2.81 2.93 V
HLVDL<3:0> = 1001 2.50 2.6 2.70 V
HLVDL<3:0> = 1010 2.40 2.52 2.64 V
HLVDL<3:0> = 1011 2.30 2.40 2.50 V
HLVDL<3:0> = 1100 2.20 2.29 2.39 V
HLVDL<3:0> = 1101 2.10 2.19 2.28 V
HLVDL<3:0> = 1110 2.00 2.08 2.17 V
VTHL HLVD Voltage on
HLVDIN Pin Transition
HLVDL<3:0> = 1111 1.2 V

Настройка модуля для работы с внешним напряжение, для контроля понижение ниже порога в MCC, выглядит таким образом:

Добавим модуль в ресурсы проекта

Выполним настройку:

Включим модуль (Enable HLVD), активируем прерывания от модуля, в последствии в прерывания включим процедуру, в которой будет необходимо выполнить требуемые операции при пропадании напряжения питания. Выберем внешний вход  HLVD для контроля напряжения.

Настроим логику работы прерывания (Voltage Change Direction) Выбор направления изменения напряжения для формирования события:
Exceeds Trip Point – Событие возникает, когда напряжение равно или превышает точку отключения.
Falls Below Trip Point  – Событие возникает, когда напряжение равно или падает ниже точки отключения.

Нас интересует вариант когда напряжение упадет ниже значения на входе 1,2 вольта (та как мы используем контроль по внешнему входу). Для контроля более высокого порога нам необходимо применить делитель на резисторах.

Например, нам надо контролировать порог 25 вольт. В качестве резистора “на землю” выберем 10 кОм, рассчитаем “верхний” резистор. Вспоминаем закон Ома.

На резисторе 10 кОм мы должны получить напряжение 1,2 вольта когда входное  25 вольт. Находим ток в цепи:

I= U/R = 1.2 V /10000 Ohm =  0.00012 A.

Падение напряжение на вернем резисторе:

Vv = Vin – 1.2 V = 25 – 1.2 = 23.8 V.

Зная ток в цепи и напряжение на резисторе найдем его сопротивление:

R = U/I = 23.8 V / 0.00012 A = 198333 Ohm.

Это приблизительно 200 kOhm.

Выполним обратный расчет, при напряжении 25 вольт на выходе делителя мы будем иметь 1.1904761904762 вольта. Но учитывая возможную погрешность на применяемом делителе, это все, вполне приемлемо.

Проверим настройку входа для HLVD модуля:

Выберем Pin Module

и проверим настройку входа

Запустим генерацию файлов в MCC

По окончанию генерации MCC предоставит нам несколько функций:

void HLVD_Initialize (void) –  инициализация и настройка модуля под наши параметры, это функция будут включена в процедуру запуска микроконтроллера. Это мы можем убедиться просмотрев функцию void SYSTEM_Initialize (void) в файле systems.c

void SYSTEM_Initialize(void)
{
    PIN_MANAGER_Initialize();
    CLOCK_Initialize();
    INTERRUPT_Initialize();
    HLVD_Initialize();
    TMR3_Initialize();
}

bool HLVD_IsReferenceVoltageStable(void) – возвращает состояние стабильно или не стабильно опорное напряжение.

bool HLVD_IsBandGapVoltageStable(void) – возвращает состояние стабильно ли контролируемое напряжение.

void HLVD_Enable(void) – предоставляет возможность пользователю включать модуль в процессе работы программы.

void HLVD_Disable(void) – отключать модуль.

void HLVD_TripPointSetup(HLVD_TRIP_DIRECTION direction, HLVD_TRIP_POINTS trip_points) – изменять настройки контроля напряжения.

и сама функция выполнения прерывания от события:

void __attribute__ (( interrupt, no_auto_psv )) _ISR _LVDInterrupt( void )
{
    if(IFS4bits.HLVDIF)
    {
        /* TODO : Add interrupt handling code */
        IFS4bits.HLVDIF = 0;
    }
}

В нее надо встроить нашу функцию, которая будет обязана выполнить наши задания, если напряжение питания становиться ниже нормы.

 



Это может быть интересно


  • Сенсорный выключатель светаСенсорный выключатель света
    Views: 12830 Хотя в настоящий момент актуальны системы управления освещением с передачей данных по электросети, но я думаю, что проекты такого рода тоже имеют право на жизнь. Анонс Три вида …
  • Altium Designer – подготовка документации для производства и сборки печатных платAltium Designer – подготовка документации для производства и сборки печатных плат
    Views: 3686 В процессе освоения Altium Designer много возникает вопросов по подготовке документации для производства плат, а также для её сборки. Altium Designer позволяет сделать все требуемые документы, хотя скажем …
  • MAX7219/21 и 8х8 LED дисплеиMAX7219/21 и 8х8 LED дисплеи
    Views: 926 MAX7219, MAX7221 предназначены для вывода информации на 8 разрядов семисегментного индикатора, но на нем легко организовать вывод на светодиодные индикаторы 8х8. продолжение следует…. Это может быть интересно
  • TDA7294 part 2TDA7294 part 2
    Views: 541 Це друга частина проекту TDA7294, початок дивись тут. Тут ви знайдете повністю проект високоякісного підсилювача на TDA7294, схема, 3D моделі, гербер файли для виготовлення друкованої плати. І звичайно …
  • Дифференциальный терморегуляторДифференциальный терморегулятор
    Views: 3993 Дифференциальный терморегулятор ch-3020 Назначение. Ch-c3020 представляет собой дифференциальный терморегулятор. Основное назначение солнечные системы горячего водоснабжения, а также вентиляционные системы управление притоком свежего воздуха. Контроллер позволяет работать пяти режимах. …
  • PIC18 – System ArbitrationPIC18 – System Arbitration
    Views: 563 Системный арбитр. Разрешает доступ к памяти между выборами уровнями системы (т.е. Main, Interrupt Service Routine) и выбором периферийных устройств (т.е. DMA и Scanner) на основе назначенных пользователем приоритетов. Каждый …
  • Проект с использованием MCC часть 16Проект с использованием MCC часть 16
    Views: 1092 Продолжим изучение EUSART. На этом этапе отработает передачи данных с ПК и получения эха. Для этого в основной цикл программы добавим код if(EUSART_DataReady) // проверим флаг готовности данных …
  • Емкостной сенсорЕмкостной сенсор
    Views: 3017 Изучаем изготовление емкостных сенсоров на PIC-микроконтроллере. Конструкция емкостных сенсоров имеет вид: Емкостные сенсоры строятся по схеме высокочастотного генератора, сам принцип основан на измерение частоты этого генератора. Частота зависит …
  • Дисплей KD035C-3A подключение и управлениеДисплей KD035C-3A подключение и управление
    Views: 705 Дисплей KD035C-3A производиться компанией SHENZHEN STARTEK ELECTRONIC TECHNOLOGY CO.,LTD Характеристики Параметр Спецификация Единицы измерения Размер дисплея 70.08(H)*52.56(V) (3.5inch) mm Тип дисплея TFT active matrix Цветовая гамма 65K/262K colors Разрешение …
  • MPLAB® Harmony – или как это просто! Часть 3.MPLAB® Harmony – или как это просто! Часть 3.
    Views: 2080 Часть третья – копнём немного глубже. Вы наверное заметили, что во второй главе, вроде сначала все шло как по маслу, а потом, что бы заморгали светики, я вставил …



 

Поделись этим!

Catcatcat

catcatcat

Development of embedded systems based on Microchip microcontrollers.

Продолжайте читать

НазадДалее