Views: 7881
LM317 и светодиоды
статья с переработанная с сайта http://invent-systems.narod.ru/LM317.htm
Долговечность светодиодов определяется качеством изготовления кристалла, а для белых светодиодов еще и качеством люминофора. В процессе эксплуатации скорость деградации кристалла зависит от рабочей температуры. Если предотвратить перегрев кристалла, то срок службы может быть очень велик до 10 и более лет.
От чего может быть вызван перегрев кристалла? Он может быть вызван только чрезмерным увеличением тока. Даже короткие импульсы тока перегрузки сокращают срок жизни светодиода, например, если в первый момент, после скачка тока визуально это воздействие не заметно и кажется, что светодиод не пострадал.
Статья в pdf [wpdm_file id=73]
Повышение тока может быть вызвано нестабильностью напряжения или электромагнитными (электростатическими) наводками на цепи питания светодиода.
Дело в том, что главным параметром для долговечности светодиода является не напряжение его питания, а ток, который по нему течет. Например, красные светодиоды по напряжению питания могут иметь разброс от 1,8 до 2,6 V, белые от 3,0 до 3,7 V. Даже в одной партии одного производителя могут встречаться светодиоды с разным рабочим напряжением. Нюанс заключается в том, что светодиоды изготовленные на основе AlInGaP/GaAs (красные, желтые, зеленые – классические) довольно хорошо выдерживают перегрузку по току, а светодиоды на основе GaInN/GaN (синие, зеленые (сине-зеленые), белые) при перегрузке по току, например, в 2 раза живут … 2-3 часов!!! Так что, если Вы желаете, чтобы светодиод горел и не сгорел в течение хотя бы 5 лет позаботесь о его питании.
Если мы устанавливаем светодиоды в цепочку (последовательное соединение) или подключаем параллельно, то добиться одинаковой светимости можно только если протекающий ток через них будет одинаков.
Также опасно для светодиодов высокое обратное напряжение. У светодиодов обычно порог обратного напряжения не превышает 5-6 V. Для зашиты светодиода от импульсов обратного напряжения рекомендуется устанавливать выпрямительный диод в обратном направлении.
Как построить своими руками самый простой стабилизатор тока? И желательно из недорогих комплектующих.
Обратим внимание на стабилизатор напряжения LM317, который легко превратить в стабилизатор тока при помощи только одного резистора, если нужно стабилизировать ток в пределах до 1 A или LM317L, если необходима стабилизация тока до 0,1 А.
Так выглядят стабилизаторы LM317 с рабочим током до 3 А.
Так выглядят стабилизаторы LM317L с рабочим током до 100 мА.
На Vin (input) подается напряжение, с Vout (output) – снимается напряжение, а Adjust – вход регулировки. Таким образом, LM317 – стабилизатор с регулируемым выходным напряжением. Минимальное выходное напряжение 1,25 V (если Adjust “посадить” прямо на землю) и максимальное – до входного напряжения минус 1,25 V. Т.К. максимальное входное напряжение составляет 37 вольт, то можно делать стабилизаторы тока до 37 вольт соответственно.
Для того чтобы LM317 превратить в стабилизатор тока нужен всего 1 резистор!
Схема включения выглядит следующим образом:
По формуле внизу рисунка очень просто рассчитать величину сопротивления резистора для необходимого тока. Т.е сопротивление резистора равно – 1,25 деленное на требуемый ток. Для стабилизаторов до 0,1 A подходит мощность резистора 0,25 W. На токи от 350 мА до 1 А рекомендуется 2 W. Ниже привожу таблицу резисторов на токи для широко распространенных светодиодов.
Ток (уточненный ток для резистора стандартного ряда) | Сопротивление резистора | Примечание | |
20 мА | 62 Ом | стандартный светодиод | |
30 мА (29) | 43 Ом | “суперфлюкс” и ему подобные | |
40 мА (38) | 33 Ом | ||
80 мА (78) | 16 Ом | четырех-кристальные | |
350 мА (321) | 3,9 Ом | 1 W | |
750 мА (694) | 1,8 Ом | 3 W | |
1000 мА (962) | 1,3 Ом | 5 W |
Вот пример с учетом всего выше сказанного. Сделаем стабилизатор тока для белых светодиодов с рабочим током 20 мА, условия эксплуатации автомобиль (сейчас так моден световой тюннинг….).
Для белых светодиодов рабочее напряжение в среднем равно 3,2 V. В легковой автомашине бортовое напряжение колеблется в среднем от 11,6 V в режиме работы от аккумулятора и до 14,2 V при работающем двигателе. Для российских машин учтем выбросы в “обратке” и в прямом направлении до 100 ! вольт.
Включить последовательно можно только 3 светодиода – 3,2*3 = 9,6 вольта, плюс 1,25 падение на стабилизаторе = 10,85. Плюс диод от обратного напряжения 0,6 вольта = 11,45 вольта.
Полученное значение 11,45 вольта ниже самого низкого напряжения в автомобиле – это хорошо! Это значит на выходе будет всегда наши 20 мА независимо от напряжения в бортовой сети автомобиля. Для защиты от выбросов положительной полярности поставим после диода супрессор на 24 вольта.
P.S. Подбирайте количество светодиодов так, чтобы на стабилизаторе оставалось как можно меньше напряжения (но не меньше 1,3 вольта), это необходимо для уменьшения рассеиваемой мощности на самом стабилизаторе. Это особенно важно для больших токов. И не забудьте, что на токи от 350 мА и выше LMка потребуется радиатор.
Вот и все!
Cхема. РИСУНОК 1
Z1 супрессор или стабилитрон для дешевых светодиодов можно и не ставить, но диод в автомобиле обязателен! Рекомендую его ставить даже, если вы просто подключаете светодиоды с гасящим резистором. Как рассчитывать сопротивление резистора для светодиодов я думаю описывать излишне, но если надо пишите на форуме.
Краткое описание к схеме рис.1
Количество светодиодов в цепочке надо выбирать с учетом вашего рабочего напряжения минус падение напряжения на стабилизаторе и минус на диоде.
Например: Вам необходимо в автомобиле подключить белые светодиоды с рабочим током в 20 мАм. Обратите внимание, что 20 мА – это рабочий ток для ФИРМЕННЫХ дорогих светодиодов!!! Только фирма гарантирует такой ток. Если вы не знаете точного происхождения, то выбирайте ток в пределах 14-15 мА. Это для того, что бы потом не удивляться, почему так быстро упала яркость или, вообще, почему они так быстро перегорели. Это тоже актуально и для мощных светодиодов. Потому что к нам завозят не всегда то, что маркировано на изделии.
Вопрос 1. Сколько можно включить их последовательно? Для белых светодиодов рабочее напряжение 3,0-3,2 вольта. Примем 3,1. Напряжение минимальное рабочее на стабилизаторе (исходя из его опорного 1,25) приблизительно 3 V. Падение на диоде 0,6 V. Отсюда суммируем все напряжения и получаем минимальное рабочее напряжение выше которого наступает режим стабилизации тока на заданном уровне (если ниже, соответственно ток будет ниже) = 3,1*3 +3,0+0,6 = 12,9 V. Для автомобиля минимальное напряжение в сети 12,6 – это нормально.
Для белых светодиодов на 20 мА можно включать 3 шт, для сети 12,6 V. Учитывая, что при включенном двигателе нормальное рабочее напряжение сети 13,6 V (это номинальное, в других вариантах может быть и выше!!!), а рабочее LM317 до 37 V
Вопрос 2 – как рассчитать сопротивление резистора задающего ток! Хотя выше и было описано, вопрос задают постоянно.
R1 = 1,25/Ist.
где R1 – сопротивление токозадающего резистора в Омах.
1,25 – опорное (минимальное напряжение стабилизации) LM317
Ist – ток стабилизации в Амперах.
Нам нужен ток в 20 мА – переводим в амперы = 0,02 А.
Вычисляем R1 = 1,25 / 0,02 = 62,5 Ом. Принимаем ближайшее значение 62 Ома.
Еще пару слов о групповом включении светодиодов.
Идеально – это последовательное включение со стабилизацией тока.
Светодиоды – это в принципе стабилитроны с очень малым обратным рабочим напряжениям. Если есть возможность наводок высокого напряжения от близ лежащих высоковольтных проводов, то необходимо каждый светодиод зашунтировать защитным диодом. (для справки многие производители особенно для мощных диодов это уже делают вмонтируя в изделие защитный диод).
если необходимо подключить массив из светодиодов, то рекомендую такую схему включения.
Резисторы необходимы для выравнивания токов по цепям и являются балластными нагрузками при повреждениях светодиодов в массиве.
Как рассчитать значение гасящего резистора для светодиода? Расчет проводиться по закону Ома.
Ток в цепи равен напряжению делённому на сопротивление цепи.
I led = V pit / на сопротивление диода и резистора.
Сопротивление резистора и диода мы не знаем, но знаем наш рабочий ток и падение напряжения на светодиоде.
Для маломощных светодиодов с током 20 мАм необходимо принимать:
Тип светодиода | Рабочее напряжение (падение на светодиоде) |
Инфракрасный | 1,6-1,8 |
Красный | 1,8-2,0 |
Желтый (зеленый) | 2,0-2,2 |
Зеленый | 3,0-3,2 |
Синий | 3,0-3,2 |
Ультрафиолетовый | 3,1-3,2 |
Белый | 3,0-3,1 |
Зная падение напряжения на светодиоде можно вычислить остаток – напряжение на резисторе.
Например, питающее напряжение V pit = 9 V. Мы подключаем 1 белый светодиод, падение на нем 3,1 V. Напряжение на резисторе будет = 9 – 3,1 = 5,9 V.
Вычисляем сопротивление резистора:
R1 = 5.9 / 0.02 = 295 Ом.
Берем резистор с близким более высоким сопротивлением 300 ом.
PS. Не всегда характеристики на рабочий ток светодиода соответствуют истине, это актуально особенно для светодиодов изготовленных “не знаю где”, для светодиодов (любых) надо большое внимание уделить отводу тепла, а так как это условие не всегда выполнимо, то по этому рекомендую для “20 мА” светодиодов выбирать ток в районе 13-15 мА. Если это SMD на 50 мА, нагружать током 25-30 мА. Эта рекомендация особенно актуальна для светодиодов с рабочим напряжением в районе 3,0 вольт (белые, синие и истинно зеленые) и светодиодов в SMD исполнении. Т.е. не задавайте максимальный ток по описанию, сделаете его на 10-25% меньше, срок службы будет в 10 дольше :)…
Рекомендую обратить внимание на драйверы, правда цена на них еще кусается
NSI45015W, NSI45020, NSI45020A, NSI45020J, NSI45025, NSI45025A, NSI45025AZ, NSI45025Z, NSI45030, NSI45030A,
NSI45030AZ, NSI45030Z, SI45035J, NSI45060JD, NSI45090JD, NSI50010YT1G, NSI50350AD, NSI50350AS
Это может быть интересно
- Проект с использованием MCC часть 01Views: 2555 Для изучения MCC я выбрал простой контроллер PIC16F1509. Выбор его был обусловлен богатой новой периферией которую можно изучить. Для начала была собрана схема на макетной плате Внешний вид …
- Проект с использованием MCC часть 09Views: 915 Эта часть будет посвящена созданию практического проекта управления освещение. Тех задание: Два выхода управления ШИМ – светодиодным освещением. Две кнопки управления, каждая кнопка управляет, своим каналом, логика самая …
- Real-time music visualization technologyViews: 135 Music visualization technology in real time (RTMV-technology). Я не музикант і я не маю спеціальної музичної освіти, я інженер розробник вбудованих систем. Але моє хобі розроблення технології візуалізації …
- MCC – K42 – настройка модуля DMAViews: 767 MCC – в версии v.3.95.0 и начиная ядра 4.85.0 конфигуратор предоставляет графический интерфейс для настройки модуля DMA. Для начала: Посмотреть какая версия МСС можно в закладке версии, если …
- Униполярный шаговый двигатель – часть 2Views: 810 В этой части только итог и версия 2.0 универсальной, которая позволяет управлять шаговым двигателем во всех трех режимах и 3.0 специальной библиотеки только для одного полушагового режима. В …
- Customs codes for exportViews: 115 Митні коди (HS Code) для надсилання посилок за кордон. Для відправки товару за кордон на сьогодні необхідно зазначати митні коди. Часто визначення коду займає багато часу. Для …
- Инфракрасный датчик движения, PIR-sensorViews: 3104 Домашняя автоматика предполагает наличие датчиков движения, которые способны контролировать движения человека. Самым простым и доступным устройством позволяющие контролировать изменения ИК-излучения, это ПИР-сенсоры. На текущий момент доступны не дорогие модели D203B, D204B, D205B. Все …
- Дифференциальный терморегуляторViews: 3993 Дифференциальный терморегулятор ch-3020 Назначение. Ch-c3020 представляет собой дифференциальный терморегулятор. Основное назначение солнечные системы горячего водоснабжения, а также вентиляционные системы управление притоком свежего воздуха. Контроллер позволяет работать пяти режимах. …
- Четырех канальный терморегулятор ch-4000Views: 3181 Четыре независимых канала регулирования температуры, одновременно можно подключить 16 датчиков температуры DS18B20 с удалением до трехсот метров. Можно для регулировки выбрать любой датчик, подключенный к устройству. Каждый канал может работать …
- ch-4000 – универсальная печатная платаViews: 1004 На смену устаревшей плате ch-3000, пришла новая ch-4000. Плату уже можно приобрести в магазине Ворон. Схема. Плата позволяет создавать таймеры, часы реального времени, регуляторы температуры, регуляторы влажности, вольтметры, …