
Views: 2251
Какие задачи нам позволяют решать структуры и объединения?
Для разработчика встроенных систем эффективность и компактность кода всегда на первом месте. Если программировании на Ассемблере ты сам определяешь как и где располагаются данные, то при программировании на Си надо позаботиться, что бы объяснить компилятору как ты хочешь, что бы данные были расположены. Для чего это надо, в первую очередь, для удобства обработки и обращения к данным.
Например, мне необходимо, чтобы данные были расположены последовательно в памяти. Для этого я опишу структуру, например:
// struct { int16_t s_CLt; // данные в формате 16 байт со знаком int16_t s_tNd; // int16_t s_rEL; // uint8_t s_SEc; // данные в формате 8 байт без знака (только положит значение) uint8_t s_Nin; // unsigned Accident :2; // данные в формате 2 байта без знака (только положит значение) unsigned Freezing :1; // данные в формате 1 байта }EE; // данные подлежащие хранению в еепром //
Это будет гарантировано, что данные в памяти будут расположены последовательно и займут 9 байт (если система процессора микроконтроллера 8 битная) или 6 слов (если 16 битная). Один дополнительный байт будут занимать две переменные описанные как Accident и Freezing, они займут соответственно 0 – 1 байт (Accident ) и 2 байт (Freezing).
Обратиться т.е записывать данные и читать можно таким образом, например:
// // Для записи EE.s_CLt = 4562; EE.Accident = 2; // Для чтения temp = EE.s_CLt; temp1 = EE.s_Nin; //
Со структурами struct все довольно понятно, это расположение данных последовательно в памяти и удобный доступ к ним, особенно, если надо писать какие-то флаги управления и потом данные “скопом” передавать через какой либо интерфейс на другое устройство. Но часто возникает необходимость например иметь представление одних и тех же данных и в виде байта (или слова) и в виде бит. Как это сделать, для этого в Си есть гибкий механизм объединения union.
Например, для передачи данных через последовательный порт нам необходимо иметь доступ к данным ка к байту, а для эффективности управления флагами управления содержащимся в этом байте, и меть доступ как к биту. Вот такой фокус и позволяют делать объединения. Еще раз структуры последовательно располагать данные в памяти, объединения описывать одни и те же данные разными именами и при этом разными типа данными.
Например, мы имеем структуру данных:
// struct { int16_t s_CLt; // данные в формате 16 байт со знаком uint8_t s_SEc; // данные в формате 8 байт без знака (только положит значение) unsigned Accident :2; // данные в формате 2 байта без знака (только положит значение) unsigned Freezing :1; // данные в формате 1 байта }EE; // //
Визуально это выглядит так:
Вся структура занимает 4 байта. EE.s_CLt занимает 2 байта, EE.s_SEc занимает 1 байта, переменные Accident, Freezing (два и и один байт) будут размещены в 4 байте.
Теперь нам, например, необходимо работать с битами переменной s_CLt, можно конечно использовать операциями с битами, например, нам надо контролировать состояние бита 0 в этой переменной мы, можем вычислить так, выполняем побитовое “&” с переменной и в зависимости от состояния операции выполняет если true или falce:
// if(EE.s_CLt & 0b0000000000000001) ******; else *******; //
Но можно каждому биту присвоить свое имя, это улучшает понимание программы и не рисвоать, что нарисовано выше например писать просто так:
// if(EE.FLED1) ******; else *******; //
Где EE.FLED1 мы дали имя биту 0 переменной EE.s_CLt, как это сделать? В нашу структуру надо внедрить объединение. Структуры и объединения можно как угодно комбинировать для всевозможного описания данных в памяти для удобной последующей обработки. В нашем варианте это будет выглядеть так:
// struct { //- union { int16_t s_CLt; // данные в формате 16 байт со знаком struct { unsigned FLED1 :1;// название бита 0 unsigned FLED2 :1;// название бита 1 unsigned FLED3 :1;// название бита 2 //***** }; }; uint8_t s_SEc; // данные в формате 8 байт без знака (только положит значение) unsigned Accident :2; // данные в формате 2 байта без знака (только положит значение) unsigned Freezing :1; // данные в формате 1 байта }EE; // //
Переменную s_CLt мы помещаем, в обеднение в котором находиться эта переменная и новая внутренняя структура. Название ни объединению, ни структуре мы не даем. В этом варианте мы сможет обращаясь, например, к EE.FLED1 контролируя или изменяя состояние бита 0 переменной EE.s_CLt.
Как это выглядит визуально.
Еще раз к пониманию структур, это возможность “объяснения” компилятору, что данные надо расположить в памяти последовательно. А к пониманию объединений, что данные одни и те же могут иметь разное название. Надеюсь я смог “на пальцах” объяснить эти гибкие особенности Си.
И для окончания, например, мне необходимо обработать эти 4 байка как одно 32 битное слово, как это сделать? Это сделать просто если нашу структур поместить в объединение и добавит в ней нашу 32 битную переменную:
union { struct { //- union { int16_t s_CLt; // данные в формате 16 байт со знаком struct { unsigned FLED1 :1;// название бита 0 unsigned FLED2 :1;// название бита 1 unsigned FLED3 :1;// название бита 2 //***** }; }; uint8_t s_SEc; // данные в формате 8 байт без знака (только положит значение) unsigned Accident :2; // данные в формате 2 байта без знака (только положит значение) unsigned Freezing :1; // данные в формате 1 байта }; uint16_t s_32bit; // в ней все наши биты }EE; //
Теперь при необходимости можно обратиться к переменной EE.s_32bit и получить все данные или изменить одной операцией.
Визуально это можно представить так:
Файлы для загрузки

Просто о структурах и объединениях в Си 343.32 KB 165 downloads
Проект с примером организации данных ...Это может быть интересно
MCC PIC24 – модуль REAL-TIME CLOCK AND CALENDAR (RTCC)
Views: 522 RTCC предоставляет пользователю часы реального времени и функция календаря (RTCC), точность “хода” может быть откалибрована. Основные особенности модуля RTCC: • Работает в режиме глубокого сна. • Возможность выбора источника …Development board based on MCU PIC18F47Q84
Views: 1573 PIC18F47Q84 Microcontroller Family with CAN Flexible Data Status: In Production.HVLD модуль на примере PIC24FJ128GA204
Views: 696 HVLD модуль представляет собой простое устройство, для контроля напряжения питания микроконтроллера или внешнего напряжения (через делитель). Его задача при “выходе” напряжения за заданные пределы сформировать сообщение микроконтроллеру, что …Проект с использованием MCC часть 03
Views: 1658 Первым делом перенастроим регистры конфигурации, следующим образом: Отключим выход генератора (CLKOUT function is disabled. I/O function on the CLKOUT pin) Включим сторожевой таймер (WDT enabled) После этой настройки …Проект с использованием MCC часть 08
Views: 1125 И так создадим проект в котором при помощи двух кнопок мы сможем управлять яркостью светодиодов. При использовании МСС у нас лафа полная, добрые дяди с Microchipa подготовили функции, …Development Boards PIC18F47Q84
Views: 5352 Microchip тішить новими мікроконтролерами. Особливістю цього MCU – це багата інтелектуальна периферія, що дозволяє вирішувати такі завдання на 8 бітних MCU, які неможливо реалізувати на деяких навіть 32 …Индикатор температуры
Views: 2699 Проект для начинающих, на демо плате BB-2T3D-01. Простой индикатор температуры. Проект никак не задумывался, просто на витрину магазин Ворон нужна была демонстрационная модель на макетной плате, чего нибудь работающего. Остановились на индикаторе …LCD драйвер – UC1601s
Views: 1677 http://svetomuzyka.narod.ru/project/UC1601s.html Читайте обновление на http://catcatcat.d-lan.dp.ua/?page_id=178 В данный момент можно приобрести в ООО “Гамма” несколько типов индикаторов на драйвере UC1601s. RDX0048-GC, RDX0077-GS, RDX0154-GC и RDX0120-GC выполнены по технологии COG.Индикатор кода – RC-5 Protocol Philips
Views: 1023 Индикатор кода – RC-5 Protocol Philips При конструировании дистанционного управления на инфракрасных лучах для контроля удобно иметь индикатор кодов передаваемых пультом. Плата ch-c3000 позволяет изготавливать устройства с возможностью …Простой цифровой вольтметр ch-c3200
Views: 2570 В этой статье рассмотрен пример создания простого вольтметра постоянного тока на основе печатной платы ch-c0030pcb, а при возможности использования внешнего делителя и вольтметр переменного тока. Дан краткий принцип …