 
		Views: 2327
Какие задачи нам позволяют решать структуры и объединения?
Для разработчика встроенных систем эффективность и компактность кода всегда на первом месте. Если программировании на Ассемблере ты сам определяешь как и где располагаются данные, то при программировании на Си надо позаботиться, что бы объяснить компилятору как ты хочешь, что бы данные были расположены. Для чего это надо, в первую очередь, для удобства обработки и обращения к данным.
Например, мне необходимо, чтобы данные были расположены последовательно в памяти. Для этого я опишу структуру, например:
//
struct
{
     int16_t s_CLt;        // данные в формате 16 байт со знаком
     int16_t s_tNd;        // 
     int16_t s_rEL;        // 
     uint8_t s_SEc;        // данные в формате 8 байт без знака (только положит значение)
     uint8_t s_Nin;        // 
     unsigned Accident :2; // данные в формате 2 байта без знака (только положит значение)
     unsigned Freezing :1; // данные в формате 1 байта
}EE; // данные подлежащие хранению в еепром
//
Это будет гарантировано, что данные в памяти будут расположены последовательно и займут 9 байт (если система процессора микроконтроллера 8 битная) или 6 слов (если 16 битная). Один дополнительный байт будут занимать две переменные описанные как Accident и Freezing, они займут соответственно 0 – 1 байт (Accident ) и 2 байт (Freezing).
Обратиться т.е записывать данные и читать можно таким образом, например:
//
// Для записи
    EE.s_CLt = 4562;
    EE.Accident = 2;
// Для чтения
    temp = EE.s_CLt;
    temp1 = EE.s_Nin;
//
Со структурами struct все довольно понятно, это расположение данных последовательно в памяти и удобный доступ к ним, особенно, если надо писать какие-то флаги управления и потом данные “скопом” передавать через какой либо интерфейс на другое устройство. Но часто возникает необходимость например иметь представление одних и тех же данных и в виде байта (или слова) и в виде бит. Как это сделать, для этого в Си есть гибкий механизм объединения union.
Например, для передачи данных через последовательный порт нам необходимо иметь доступ к данным ка к байту, а для эффективности управления флагами управления содержащимся в этом байте, и меть доступ как к биту. Вот такой фокус и позволяют делать объединения. Еще раз структуры последовательно располагать данные в памяти, объединения описывать одни и те же данные разными именами и при этом разными типа данными.
Например, мы имеем структуру данных:
//
struct
{
     int16_t s_CLt;        // данные в формате 16 байт со знаком
     uint8_t s_SEc;        // данные в формате 8 байт без знака (только положит значение)
     unsigned Accident :2; // данные в формате 2 байта без знака (только положит значение)
     unsigned Freezing :1; // данные в формате 1 байта
}EE; // 
//
Визуально это выглядит так:
Вся структура занимает 4 байта. EE.s_CLt занимает 2 байта, EE.s_SEc занимает 1 байта, переменные Accident, Freezing (два и и один байт) будут размещены в 4 байте.
Теперь нам, например, необходимо работать с битами переменной s_CLt, можно конечно использовать операциями с битами, например, нам надо контролировать состояние бита 0 в этой переменной мы, можем вычислить так, выполняем побитовое “&” с переменной и в зависимости от состояния операции выполняет если true или falce:
//
    if(EE.s_CLt & 0b0000000000000001) ******;
    else *******;
//
Но можно каждому биту присвоить свое имя, это улучшает понимание программы и не рисвоать, что нарисовано выше например писать просто так:
//
    if(EE.FLED1) ******;
    else *******;
//
Где EE.FLED1 мы дали имя биту 0 переменной EE.s_CLt, как это сделать? В нашу структуру надо внедрить объединение. Структуры и объединения можно как угодно комбинировать для всевозможного описания данных в памяти для удобной последующей обработки. В нашем варианте это будет выглядеть так:
//
struct
{
    //-
    union
    {
        int16_t s_CLt;      // данные в формате 16 байт со знаком
        struct
        {
            unsigned	FLED1 :1;// название бита 0
            unsigned	FLED2 :1;// название бита 1
            unsigned	FLED3 :1;// название бита 2
            //*****
        };
    };
    
    uint8_t     s_SEc;          // данные в формате 8 байт без знака (только положит значение)
    unsigned    Accident :2;    // данные в формате 2 байта без знака (только положит значение)
    unsigned    Freezing :1;    // данные в формате 1 байта
}EE;    //
//
Переменную s_CLt мы помещаем, в обеднение в котором находиться эта переменная и новая внутренняя структура. Название ни объединению, ни структуре мы не даем. В этом варианте мы сможет обращаясь, например, к EE.FLED1 контролируя или изменяя состояние бита 0 переменной EE.s_CLt.
Как это выглядит визуально.
Еще раз к пониманию структур, это возможность “объяснения” компилятору, что данные надо расположить в памяти последовательно. А к пониманию объединений, что данные одни и те же могут иметь разное название. Надеюсь я смог “на пальцах” объяснить эти гибкие особенности Си.
И для окончания, например, мне необходимо обработать эти 4 байка как одно 32 битное слово, как это сделать? Это сделать просто если нашу структур поместить в объединение и добавит в ней нашу 32 битную переменную:
union
{
    struct
    {
        //-
        union
        {
            int16_t s_CLt;      // данные в формате 16 байт со знаком
            struct
            {
                unsigned	FLED1 :1;// название бита 0
                unsigned	FLED2 :1;// название бита 1
                unsigned	FLED3 :1;// название бита 2
                //*****
            };
        };
        uint8_t     s_SEc;          // данные в формате 8 байт без знака (только положит значение)
        unsigned    Accident :2;    // данные в формате 2 байта без знака (только положит значение)
        unsigned    Freezing :1;    // данные в формате 1 байта
    };
    uint16_t s_32bit;               // в ней все наши биты
}EE;    //
Теперь при необходимости можно обратиться к переменной EE.s_32bit и получить все данные или изменить одной операцией.
Визуально это можно представить так:
Файлы для загрузки
 
        Просто о структурах и объединениях в Си 343.32 KB 165 downloads
Проект с примером организации данных ...Это может быть интересно
 Униполярный шаговый двигательViews: 2437 В приводах различных устройств часто применяются шаговые двигатели, Шаговый двигатели различают двух типов униполярные – когда обмотки коммутируются током текущим только в одну сторону, например при … Униполярный шаговый двигательViews: 2437 В приводах различных устройств часто применяются шаговые двигатели, Шаговый двигатели различают двух типов униполярные – когда обмотки коммутируются током текущим только в одну сторону, например при …
 TDA7294 part 1Views: 455 TDA7294 має унікальні дані для створення підсилювачів звукової частоти HI-FI класу. Варіант застосування є конфігурація BRIDGE (мостова схема включення), де використовуються два TDA7294, як показано на схематичній діаграмі … TDA7294 part 1Views: 455 TDA7294 має унікальні дані для створення підсилювачів звукової частоти HI-FI класу. Варіант застосування є конфігурація BRIDGE (мостова схема включення), де використовуються два TDA7294, як показано на схематичній діаграмі …
 ch-светомузыка от теории до реализацииViews: 903 Сразу оговоримся технология или теория ch-светомузыки, это постоянно развивающийся процесс и то что будет сказано сегодня завтра может быть опровергнуто и считаться ошибочным. Назовем само решение проблемы автоматического … ch-светомузыка от теории до реализацииViews: 903 Сразу оговоримся технология или теория ch-светомузыки, это постоянно развивающийся процесс и то что будет сказано сегодня завтра может быть опровергнуто и считаться ошибочным. Назовем само решение проблемы автоматического …
 Development board based on MCU PIC18F47Q84Views: 2451 PIC18F47Q84 Microcontroller Family with CAN Flexible Data Status: In Production. Development board based on MCU PIC18F47Q84Views: 2451 PIC18F47Q84 Microcontroller Family with CAN Flexible Data Status: In Production.
 Проект с использованием MCC часть 12-1Views: 1082 В настоящее время без визуализации информации уже не интересно. Поэтому научимся выводить информацию на дисплей. Для это возьмет простенький OLED RET012864E/REX012864J я такой приобретал в фирме “Гамма-Украина”, описание можно … Проект с использованием MCC часть 12-1Views: 1082 В настоящее время без визуализации информации уже не интересно. Поэтому научимся выводить информацию на дисплей. Для это возьмет простенький OLED RET012864E/REX012864J я такой приобретал в фирме “Гамма-Украина”, описание можно …
 Применение typedef, struct и unionViews: 8906 Полезные описания переменных Часто необходимо в памяти расположить последовательно разные виды данных, что бы потом можно было их использовать. Полезные ссылки Взято и переработано с сайта http://www.butovo.com/~zss/cpp/struct.htm http://cppstudio.com/post/9172/ … Применение typedef, struct и unionViews: 8906 Полезные описания переменных Часто необходимо в памяти расположить последовательно разные виды данных, что бы потом можно было их использовать. Полезные ссылки Взято и переработано с сайта http://www.butovo.com/~zss/cpp/struct.htm http://cppstudio.com/post/9172/ …
 Оптосимистор и его применениеViews: 20124 Эрве Кадино “Цветомузыкальные установки” Ответ на вопрос – управление мощным тиристором или симистором, от терморегулятора. Статья в pdf[wpdm_file id=129 template=”link-template-calltoaction3.php”] Оптосимистор принадлежат к классу оптронов и обеспечивают очень хорошую … Оптосимистор и его применениеViews: 20124 Эрве Кадино “Цветомузыкальные установки” Ответ на вопрос – управление мощным тиристором или симистором, от терморегулятора. Статья в pdf[wpdm_file id=129 template=”link-template-calltoaction3.php”] Оптосимистор принадлежат к классу оптронов и обеспечивают очень хорошую …
 VU Meter Tower ART – part 2Views: 1177 Проект – VU Meter Tower ART получил продолжение в своем развитии. Теперь можно заказать набор деталей из акрила для самостоятельной сборки. В проект корпуса внесено целый ряд доработок, … VU Meter Tower ART – part 2Views: 1177 Проект – VU Meter Tower ART получил продолжение в своем развитии. Теперь можно заказать набор деталей из акрила для самостоятельной сборки. В проект корпуса внесено целый ряд доработок, …
 Модуль CAN в микроконтроллерах PIC18Views: 5932 Введение CAN последовательный интерфейс связи, который эффективно поддерживает распределенное управление в реальном масштабе времени с высокой помехозащищенностью. Протокол связи полностью определен Robert Bosch GmbH, в спецификации требований … Модуль CAN в микроконтроллерах PIC18Views: 5932 Введение CAN последовательный интерфейс связи, который эффективно поддерживает распределенное управление в реальном масштабе времени с высокой помехозащищенностью. Протокол связи полностью определен Robert Bosch GmbH, в спецификации требований …
 CLUBBEST-50-LightViews: 449 CLUBBEST-50-LIGHT Зміст Короткий опис проекту. 1 Опис схемотехніки візуалізатора музики. 2 Аудіо вхід. 3 MCU. 4 Цифровий вихід. 5 Схема живлення MCU. 6 Складання пристрою. 7 Список … CLUBBEST-50-LightViews: 449 CLUBBEST-50-LIGHT Зміст Короткий опис проекту. 1 Опис схемотехніки візуалізатора музики. 2 Аудіо вхід. 3 MCU. 4 Цифровий вихід. 5 Схема живлення MCU. 6 Складання пристрою. 7 Список …



