Views: 2055
Измерение температуры и влажности при помощи датчика DHT11.
Статья в PDF [wpdm_file id=220]
DHT11 недорогой цифровой датчик температуры и влажности. Он использует емкостной датчик влажности и терморезистор для измерения температуры окружающего воздуха, данные выдает в цифровой форме по шине типа 1-wire. В использовании он довольно прост, но требует точного определения длительности временных сигналов, чтобы декодировать данные. Единственный недостаток это возможность получения данных не чаще 1 раза в две секунды.
Особенности.
· Температурная компенсация во всем диапазоне работы
· Измерение относительной влажности и температуры
· Калиброванный цифровой сигнал
· Отличная долгосрочная стабильность показаний
· Не требуются дополнительные компоненты
· Возможность передачи данных на большое растояние
· Низкое энергопотребление
· 4-контактный корпус и полностью взаимозаменяемы
Детали.
Для преобразования данных внутри датчика используется 8-битный микроконтроллер, В процессе производства датчики калибруются и калибровочная константа записывается вместе с программой в память микроконтроллера. Однопроводный последовательный интерфейс дает возможность быстрой интеграции в устройство. Его небольшие размеры, низкое энергопотребление и до-20-метром передачи сигнала, что делает его привлекательным выбором для различных приложений.
Диапазон измеряемых параметров.
Обзор:
Параметр | Диапазон измерения | Точность | Разрешение |
Влажность | 20-90% | ±5% | 1 |
Температура | 0-50°С | ±2°С | 1 |
Подробные спецификации:
Параметр | Условия | Минимальное | Типичное | Максимальное |
Влажность | ||||
Разрешение | 1% | 1% | 1% | |
8 бит | ||||
Стабильность | ±1%RH | |||
Точность | 25°С | ±4%RH | ||
0-50°С | ±5%RH | |||
Взаимозаменяемость | полностью взаимозаменяемы | |||
Диапазон измерения |
0°С | 30%RH | 90%RH | |
25°С | 20%RH | 90%RH | ||
50°С | 20%RH | 80%RH | ||
Время отклика (в секундах) |
1/e(63%)25℃, 1m/s Air |
6 | 10 | 15 |
Гистерезис | ±1%RH | |||
Долговременная стабильность |
типичная | ±1%RH/year | ||
Температура | 1°С | 1°С | 1°С | |
Разрешение | 8 бит | 8 бит | 8 бит | |
Стабильность | ±1°С | |||
Точность | ±1°С | ±2°С | ||
Диапазон измерения |
0°С | 50°С | ||
Время отклика (в секундах) |
6 | 30 |
Электрические параметры:
Параметр | Режим | Мин | Типовое | Макс | Ед.изм. |
Напряжение питания | DC | 3 | 5 | 5.5 | V |
Ток потребления | Измерение | 0.5 | 2.5 | mA | |
Ожидание | 100 | 150 | uA | ||
Среднее | 0.2 | 1 | mA |
Габаритные размеры и подключение:
Питание DHT11 составляет 3-5.5V DC. После подачи питания на датчик, необходимо выдержать паузу длительностью не менее 1 секунды перед началом считывания данных. Для фильтрации напряжения питания можно добавить один конденсатор 0,1 мкФ между Vdd и Vss.
Последовательный интерфейс (Single-Wire Двусторонний)
Весь обмен данными выполняется по одной одному проводу (шине). На шине может присутствовать только один датчик. Для получения высокого уровня используется подтягивающий резистор (5-10 кОм), т.е в пассивном состоянии на шине высокий уровень. Формат обмена данными может быть разделен на три этапа:
1) Инициализации.
2) Преамбула.
3) Передача данных.
Инициализация.
Процесс чтения данных начинается с импульса инициализации который формирует микроконтроллер. Он должен установить на шине низкий уровень на время не менее 18 mS, для инициализации DHT-11.
Преамбула.
Микроконтроллер после формирования импульса инициализации должен сразу перевести порт в режим чтения (режим приема данных). Если датчик готов к передачи данных, он ответит сформировав преамбулу. Один период меандра длительностью ~160 us.
Микроконтроллер получив ответ от датчика, может начать чтение данных.
Передача данных.
Данные представляют собой 5 байт данных, которые читаются по битно микроконтроллером, т.е всего 40 бит.
Первые два байта данные влажности (относительная влажность), целая и дробная часть. Третий и четвертый температура (градусы Цельсия), целая и дробная часть и пятый последний байт контрольная сумма, которая равна сумме первых 4 байт. К сожалению хотя и присутствуют байты отвечающие за десятые доли градуса и процента, реально контроллер датчика их не вычисляет (хотя это и понятно при такой точности это бесполезно), поэтому в них всегда присутствуют нули. Если реально считывать эти байты то мы увидим, например:
bait0 = 41 // влажность
bait1 = 0
bait2 = 31 // температура
bait3 = 0
bait4 = 72 // контрольная сумма
Но нет худа без добра, если в этих байтах всегда нули, то можно это значение (аналогично как для контрольной суммы) использовать для достоверности передачи данных.
Данные кодируются длительностью высокого уровня в каждом бите, бит начинается стробом низкого уровня длительностью приблизительно 50-54uS, после строба идет высокий уровень, если длительность высокого уровня в пределах 24 uS, то это передается “0”, если в пределах 70 uS – передается “1”.
Бит ‘0 ‘:
По окончанию передачи данных датчик передает последний строб, устанавливает на шине высокий уровень и переходит в спящий режим.
Логика чтения данных может быть следующая.
Вид передачи полностью:
Датчик подключается ко входу который может формировать прерывания по изменению уровня на входе. Для определения длительности импульса можно использовать таймер микроконтроллера.
Для демо проекта используем плату ILLISSI_B4_primum с установленным микроконтроллером PIC16F1936. Для индикации данные будем выводить, через USB порт на терминал программы AN1310 Microchip.
Вариант построение программа для чтения данных с датчика для компилятора MPLAB® XC8 Compiler v1.20. Для измерение длительности мы применим таймер Timer0. А для контроля моментов изменения сигнала на входах будем использовать возможность микроконтроллера формировать прерывания по изменению состояния на входах. Всё декодирование данных будет выполняться в прерывании (благо там минимум работы), поэтому для основной программы остается только дать “толчек” для выдачи данных и обработать их когда данные будут готовы.
Настройка прерывание для работы с датчиком
IOCBP=0b00000000; // отключить все прерывания и сбросить все флаги IOCBN=0b00000000; IOCBF=0b00000000; INTCON=0b11001000; /* || | +---- сбросить флаг прерывания от изменеию состояния на входе * || +------- разрешить прерывания по изменению состояния на входе * |+---------- разрешить прерывания от переферии * +----------- разрешить глобальные прерывания */ OPTION_REG=0b11000010;// настройка таймера Timer0 /* |+++---- PS<2:0>:010-1 : 8 * +------- PSA:0 = Prescaler is assigned to the Timer0 module */
Функция запуска измерения (её можно в ставить в главный цикл для постоянного получения данных)
if(DHT11==0)// запуск измерения { DHT11=1; // включить цикл измерения TRISB=0; // настроить порт на выход LATB0=0; // установить низкий уровень __delay_ms(18); // задержка в 18 миллисекунд (больше можно :)) IOCBP0=1; // настроить прерывание на входе RB0 на фронт IOCBF0=0; // сбросить флаг прерывания TRISB=1; // настроить порт на вход PREAM=1; // поиск преамбулы }
Вариант обработки прерываний
//=====================================прерывания================================== void interrupt my_isr(void) // { if(IOCIF) { IOCIF=0; //сбросить флаг IOCBF0=0; //сбросить флаг if(DHT11) { if(IOCBP0)// если прерывания по фронту { IOCBP0=0; // отключить прерывание по фронту IOCBN0=1; // включить прерывание по срезу TMR0=0; // сбросить таймер TMR0IF=0; // сбросить флаг переполнения TMR0IE=1; // разрешить прерывания TMR0 } else { dlinimp=TMR0; // сохранить значение таймера в регистр TMR0=0; // сбросить таймер TMR0IF=0; // сбросить флаг переполнения IOCBP0=1; //включить прерывание по фронту IOCBN0=0; //отключить прерывание по срезу LATB1=!LATB1; // переключить светодиод if(!TMR0IF) { if(PREAM)// поиск преамбулы { if(dlinimp>80) { PREAM=0;// преамбула принята countbit=0; } } else { if(countbit<8) { bait0<<=1; if(dlinimp>30) bait0 |= 0b00000001;// определение бита и запись его в байт приема } else if(countbit<16) { bait1<<=1; if(dlinimp>30) bait1 |= 0b00000001;// определение бита и запись его в байт приема } else if(countbit<24) { bait2<<=1; if(dlinimp>30) bait2 |= 0b00000001;// определение бита и запись его в байт приема } else if(countbit<32) { bait3<<=1; if(dlinimp>30) bait3 |= 0b00000001;// определение бита и запись его в байт приема } else if(countbit<40) { bait4<<=1; if(dlinimp>30) bait4 |= 0b00000001;// определение бита и запись его в байт приема } countbit++;// увеличить счетчик бит } } else { ERROR_DHT11=1; // неисправность датчика } } } } if(TMR0IF) { TMR0IF=0; DHT11=0; TMR0IE=0; //запретить прерывания TMR0 } }//===================================end_interrupt=================================
Вывод: простой недорогой датчик влажности и температуры, для проектов бытового назначения.
[box title=”Файлы для загрузки” color=”#521BDE”] Демонстрационный проект, MPLAB® X IDE v1.85, MPLAB® XC8 Compiler v1.20[wpdm_file id=219][/box]
Это может быть интересно
- Емкостной сенсорViews: 3017 Изучаем изготовление емкостных сенсоров на PIC-микроконтроллере. Конструкция емкостных сенсоров имеет вид: Емкостные сенсоры строятся по схеме высокочастотного генератора, сам принцип основан на измерение частоты этого генератора. Частота зависит …
- TDA7294 part 2Views: 541 Це друга частина проекту TDA7294, початок дивись тут. Тут ви знайдете повністю проект високоякісного підсилювача на TDA7294, схема, 3D моделі, гербер файли для виготовлення друкованої плати. І звичайно …
- Часы + Календарь + Термометр + …Views: 2723 Часы + Календарь + Термометр + Индикатор влажности + Секундомер + Дистанционное управление на ИК лучах (пульты на RC-5 протоколе) + Автоматическая регулировка яркости + Возможность вывода данных через USB, …
- Униполярный шаговый двигатель – часть 2Views: 810 В этой части только итог и версия 2.0 универсальной, которая позволяет управлять шаговым двигателем во всех трех режимах и 3.0 специальной библиотеки только для одного полушагового режима. В …
- Стробоскоп для автомобиляViews: 2163 Одним из популярных решений светового тюнинга автомобиля, мотоцикла или скутера стал эффект – “полицейский стробоскоп“. На база платы ch-c0050 реализовано несколько проектов. В этой статье приводятся две версии …
- Простой сенсорный регулятор светаViews: 2313 Простой сенсорный регулятор. Проект – 2007 года. Регулятор выполнена на микроконтроллере PIC12F683 и имеет минимальное количество элементов. Выполняет стандартные функции, включение выключение света, изменение яркости, запоминание последнего установленного уровня …
- Customs codes for exportViews: 115 Митні коди (HS Code) для надсилання посилок за кордон. Для відправки товару за кордон на сьогодні необхідно зазначати митні коди. Часто визначення коду займає багато часу. Для …
- AD9833 – Programmable Waveform GeneratorViews: 2854 Простой генератор звуковых частот на AD9833. Для тестирования БПФ в светомузыке мне нужен был генератор звуковых частот. Я использовал советский Г3-112, но он себя давно изжил. Все думал купить …
- Проект с использованием MCC часть 03Views: 1596 Первым делом перенастроим регистры конфигурации, следующим образом: Отключим выход генератора (CLKOUT function is disabled. I/O function on the CLKOUT pin) Включим сторожевой таймер (WDT enabled) После этой настройки …
- Altium Designer my setup system and project structureViews: 796 Используйте только последнее обновление!!! Updates https://catcatcat.d-lan.dp.ua/altium-designer-my-libraries-project-templates-system-settings-by-catcatcat-v23-09/ Тут хочу поделиться как я настраиваю Altium Designer и как я использую файлы DXPPreferences.DXPPrf для быстрой конфигурации и получения …